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Abstract

We present a novel method called “generative regulatory measurement” that uses Large Lan-
guage Models (LLMs) to interpret administrative documents. We demonstrate its effectiveness
in analyzing municipal zoning codes, achieving 96% accuracy in binary classification tasks and
a 0.87 correlation for continuous questions. Applying this approach to a comprehensive sample
of U.S. zoning regulations, we establish four facts about American zoning: (1) Housing reg-
ulations are multidimensional and can be clustered into two main principal components. (2)
The first of which corresponds to value capture, indicating how municipalities extract economic
benefits in areas of high housing demand. (3) The second principal component associates with
exclusionary zoning, resulting in higher housing costs and socioeconomic exclusion. (4) Zoning
follows a monocentric pattern with regional variations, with suburban regulations particularly
strict in the Northeast. We develop a model of non-cooperative municipal government regula-
tory choice consistent with these facts.
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1 Introduction

Housing regulations govern the built environment of American cities, dictating the form and extent

of residential development and housing affordability (Glaeser and Gyourko, 2018; Gyourko et al.,

2008). The influence of zoning laws and land use policies extends far beyond the real estate mar-

ket, with implications for social segregation, economic mobility, environmental sustainability, the

growth of urban agglomerations, and construction sector productivity (Gyourko and Molloy, 2015;

Kahn, 2000; Hsieh and Moretti, 2019; D’Amico et al., 2023). Despite their critical importance for

such diverse outcomes, accurately measuring housing regulations remains a challenge due to the

complexity and variation of municipal ordinances. These measurement gaps hinder our ability to

understand the fundamental drivers of housing regulation and their broader impacts.

Our paper argues that advances in Large language Models (LLMs) enable scalable and accurate

classification of regulatory documents, a task that we refer to as generative regulatory measure-

ment. We obtain municipal codes for 63% of the population covered by local zoning ordinances,

and develop an LLM-powered algorithm to estimate housing regulation on the full text of these

documents. Our approach builds on the Retrieval Augmented Generation (RAG) architecture,

adding prompt-engineering, prompt chaining, and detailed background information on zoning. We

apply this methodology to a set of regulatory questions initially developed by the Pioneer Insti-

tute for Massachusetts (Glaeser and Ward, 2009), and benchmark our LLM-generated regulatory

categorizations against human-coded measurements from this same study.

Our results indicate that LLMs have achieved near-human rates of precision in classifying regu-

lation, with an accuracy rate of 96% for binary questions. LLMs also perform strongly on numerical

questions with a correlation of 0.87 for continuous questions. We manually verify a subset of housing

regulations in California to ensure that our results are not geographically biased. We also expand

the original Pioneer classification by incorporating additional questions on housing process regula-

tions, and verify high accuracy on this new set of measures. We use the resulting LLM-produced

dataset on national housing regulations, along with other housing data, to establish four key facts

about housing regulation and its impacts across the United States.

First, we find that housing regulation is multidimensional, and most variation cannot be captured
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by a single axis of housing stringency. This contrasts with prior analysis which has largely focused

on a unidimensional distinction between regions with stricter or less strict land use regulation

(Gyourko et al., 2021). We focus on the first two principal components of housing regulation, and

find distinctive patterns of which municipalities adopt these regulations and the impacts they have

on housing markets. The first principal component of our regulatory questions is associated with

high prices and high construction, suggesting regulations that allow development but exact value in

high-demand environments. In contrast, the second principal component associates with high prices

but low construction, indicating regulations that restrict housing supply. Our ability to measure a

more detailed, granular, and comprehensive set of regulations identifies distinct regulatory regimes

that are associated with divergent housing market outcomes.

Second, we argue the first principal component can be interpreted as having a role of value

capture in high-demand environments. This component loads heavily on regulations that allow

local governments to extract and redistribute housing surplus, such as inclusionary zoning mandates

that require developers to include affordable units. These regulations are typically found in densely

populated, centrally located cities that tend to support Democratic political candidates. These

regulations are higher in areas with higher amenities—as measured in terms of consumption (retail

establishments), natural amenities (such as good weather or proximity to bodies of water), and

productive spillovers (patents per capita and job density). The strong correlation with diverse

amenity measures suggests these regulations emerge precisely in locations with the most valuable

land and highest development potential. Rather than completely blocking all development, these

regulations impose implicit taxes on new construction for the purposes of redistribution and funding

local public goods.

Third, we connect the second principal component to exclusionary zoning practices aimed at

limiting density and affordable housing options. This dimension relies heavily on bulk regulations,

such as minimum lot size requirements, as well as procedural barriers to development. Among

single-family zoned areas in municipalities across the country, 66% have town-wide minimum lot

size requirements above 5,000 square feet, 17% of requirements are above 10,000 square feet, and

7% have requirements exceeding half an acre. These tools are particularly prevalent in affluent,

predominantly white suburban areas that tend to lean Republican relative to other areas in their
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metropolitan area. We find a strong association between these regulatory measures and indicators of

local school performance and social mobility, suggesting a role for educational sorting. Unlike value

capture regulations that allow for development with conditions, these exclusionary practices directly

left-truncate the housing distribution through regulations that effectively require households to

consume a minimum quantity of housing. These regulations therefore intensify economic and racial

segregation by effectively pricing out lower-income and minority households from neighborhoods

with desirable public goods, particularly high-performing schools.

Fourth and finally, we find that housing regulation varies within metropolitan areas in ways

that are broadly consistent with a monocentric city model (Alonso, 1964; Muth, 1971), while also

highlighting significant deviations. As standard monocentric city models predict, denser building is

generally allowed in city centers, with stricter bulk regulations and lower density requirements found

in inner-ring suburbs. However, we also observe substantial sorting of high-income households into

expensive suburbs with higher minimum size requirements. This is in contrast to the most basic

models in which all households, regardless of income, are assumed to prefer central locations to

minimize commuting costs. Our findings suggest a more complicated spatial pattern, with some

peripheral suburban locations able to maintain high prices and sorting by affluent households in

areas with stricter zoning. We find that this pattern is particularly pronounced in the Northeast,

which has substantially more onerous bulk regulation requirements than other regions of the coun-

try. This pattern is largely driven by the fact that low-density areas around historic industrial

centers in the Northeast (and to a lesser extent the Midwest) adopted disproportionately strict bulk

regulations, generating greater persistence in urban form relative to the rest of the country. We

suggest some possible drivers for this result, such as regulatory mitigations against pollutants and

social exclusionary factors against workers in industrial hubs.

We develop a model of inter-municipal competition to interpret these facts. In the model, local

governments strategically and non-cooperatively select between two sets of housing regulations:

one associated with value capture and the other with exclusionary zoning through the imposition of

minimum housing requirements. Our framework builds on a literature examining Tiebout sorting

and local goods provision (Tiebout, 1956; Epple and Zelenitz, 1981), as well as traditional theories

of zoning focused on housing sorting across public goods regimes (Fischel, 1987; Brueckner, 1995;
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Hamilton, 1975), but generates distinct predictions about regulatory behavior that are consistent

with our empirical results.

The model predicts that metropolitan cores with high amenities will implement value capture

regulations. These regulations act as implicit taxes on housing development (similar to rent-seeking

behavior in other municipal contexts as in Diamond (2017)), with the seized housing surplus redis-

tributed to residents in the form of public goods provisioning. In contrast, the model predicts that

suburban areas will adopt exclusionary regulations to generate more tax revenue from a concen-

trated pool of affluent households. Exclusionary zoning is less attractive to municipalities that are

too large to be filled primarily with the most affluent households. This leads to a spatial equilib-

rium in which suburbs are home to higher-income residents, while poorer households concentrate in

urban areas. The model thus generates clear spatial predictions about regulatory patterns: value

capture in high-demand urban cores and exclusionary zoning in suburbs, matching the empirical

patterns we document.

Our paper makes four primary contributions to the literature. First, our key methodological

contribution lies in developing a general-purpose approach to measure the content of regulatory doc-

uments and quantify the accuracy and reliability of the resulting classifications. A long-standing

literature has used text analysis to extract measures of sentiment from firm or policymaker com-

munications (Romer and Romer, 2004; Tetlock, 2007; Hassan et al., 2019; Lopez-Lira and Tang,

2023). More recently, researchers have begun to use LLMs to collect more detailed data from lit-

erary, financial, regulatory, and legal documents (Dell, 2025; Giesecke, 2023; Lagakos et al., 2025;

Jha et al., 2023; Yang, 2023; Bybee, 2023; Hansen and Kazinnik, 2023; Hoffman and Arbel, 2023).

However, existing research on AI models emphasizes both their promise in analyzing textual data

(Zhao et al., 2023), as well as challenges with undesirable AI features such as “hallucination” and

manufactured model output (Azamfirei et al., 2023). We show that when coupled with careful text

selection, prompting, and background information, that LLMs can be used to parse complicated

regulatory documents with high fidelity.1

1Outside of our context of reading regulatory documents researchers have also highlighted the potential for using
LLMs for a variety of purposes, including social science hypothesis generation (Horton, 2023). A growing literature
also examines broader implications of Generative AI (Eisfeldt et al., 2023; Brynjolfsson et al., 2023), as well as the
role of algorithms applied to real estate (Calder-Wang and Kim, 2023; Raymond, 2023).
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In addition to high accuracy rates, our approach offers several other advantages for researchers.

It provides unprecedented scalability at low cost: we successfully apply our regulatory classification

measure across thousands of municipalities, a task that would be expensive and time-consuming for

human analysts. This scalability opens up possibilities for comprehensive regulatory analysis across

multiple domains. Our approach also ensures verifiability and auditability by prompting the LLM to

provide specific supporting text from the regulatory documents, enabling independent verification of

classifications. Finally, our approach is highly adaptable, allowing researchers to easily incorporate

changes in regulatory interpretations or advancements in AI models, facilitating replication and

refinement of measurements over time. The broad applicability of our approach extends to various

domains where textual analysis is crucial, including building codes, tax regulations, legal cases,

financial reports, newspapers, and other uses. This versatility is particularly valuable as the volume

and complexity of regulations continue to increase (Singla, 2023).

Our second contribution is the production of a novel and comprehensive dataset on housing

regulation across the United States. Our method improves on existing approaches in accuracy,

granularity of regulatory measurement, and scope. Survey-based approaches to measuring zoning

regulations nationally, such as the Wharton Regulatory Index (Gyourko et al., 2008, 2021; Huang

and Tang, 2012), offer broad coverage on housing regulations, but are limited by low and potentially

biased response rates, fixed questionnaires, and inaccuracy by respondents (Lewis and Marantz

(2019)). Another approach imputes zoning regulations using either wedge-based approaches that

measure the expected spatial macroeconomic distortions resulting from zoning (see Turner et al.

(2014), Hsieh and Moretti (2019), Glaeser et al. (2005), Herkenhoff et al. (2018), Babalievsky

et al. (2021), and Duranton and Puga (2019)) or use references to zoning regulations in court

cases (Ganong and Shoag (2017)) or newspaper articles (Stacy et al. (2023)). These imputation

approaches provide insights on the general importance of zoning regulations, but are more limited

in estimating precisely which regulations matter or bind. Another branch of the literature instead

conducts more detailed analysis of regulations at the local level, sacrificing generalizability for more

granularity (see e.g. Quigley and Raphael (2005), Ihlanfeldt (2007), Glaeser and Ward (2009),

Jackson (2016), Shanks (2021)).

Existing research therefore leaves significant gaps in our understanding of their measurement
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and impacts. National studies identify broad impacts of regulations on housing costs and construc-

tion but lack specificity on key drivers, while more detailed state-level analyses are geographically

limited and may not be nationally representative. We show that challenges to the scaling more

granular local approaches to the national level can be addressed through a combination of LLMs,

RAG architecture, careful prompt-engineering and training, and background information. Our new

approach provides both the comprehensiveness and granularity of the state-based approaches along

with the scale of the national regulatory studies. Our approach provides detailed measures of zon-

ing regulations for over 5,800 municipalities, more than twice as many municipalities as previous

national studies such as the Wharton Regulatory Index, while providing as much granularity as

local studies such as the Pioneer Institute study.2

Third, our key economic contribution is to exploit these rich data to provide a more nuanced

portrait of zoning regulations than was previously possible, showing that zoning regulations are not

well-summarized by one dimensional indices of stringency and that municipalities enact disparate

regulatory regimes that vary dramatically across space depending on municipal circumstances. Pre-

vious research has often either focused on analysis of individual regulations (Gyourko and McCul-

loch, 2023; Cui, 2024) or has focused on uni-dimensional indices of regulatory stringency (Quigley

and Raphael, 2005; Ihlanfeldt, 2007; Gyourko et al., 2008; Glaeser and Ward, 2009; Jackson, 2016).3

Rather than relying on aggregate indices or indirect measures, we directly measure specific provi-

sions, allowing us to distinguish between value capture tools in urban cores (like inclusionary zoning

mandates) and exclusionary practices in suburbs (like minimum lot size requirements). The size and

coverage of our data allows us to explore how regulations vary within municipality. Specifically, we

show how these distinct regulatory approaches vary within metropolitan areas: high demand urban

areas use value extraction regulations to extract some of the surplus generated by high amenities,

while suburban regulations maintain exclusivity through density restrictions.
2Mleczko and Desmond (2023) use a non-LLM natural language processing (NLP) approach to measure a set of

zoning regulations for most of the municipalities covered by the Wharton Regulatory Index (Gyourko et al., 2008),
about 2600 in total, less than half the size of our sample. Their approach requires significantly more manual input
than ours, reducing its scalability, and the accuracy level is unclear because they do not present results comparing
their measures to a test dataset not used in training.

3One notable exception is Mayer and Somerville (2000) which classifies regulations based on whether they add
costs, delays, or uncertainty development and then measure the extent to which these three indices of regulation
have affected new construction using a panel dataset on construction for 44 metro areas using regulatory data from
an early version of the Wharton Regulatory Index.
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Fourth, our theory contribution is to develop a model of non-cooperative regulation choice by

local governments who have access to multiple zoning instruments to explain the zoning patterns we

observed in our data. This model shows that large, high amenity municipalities will be more likely to

choose extractive zoning regulations, while small, outlying municipalities, with lower amenities will

be more likely to choose exclusionary regulations. These predictions help unite disparate aspects

of the theoretical literature on zoning, which has discussed how zoning regulations can be used to

create efficient public goods provision and sorting (Tiebout, 1956; Fischel, 1987; Hamilton, 1975,

1976), lead to segregation (Rothstein, 2017; Cui, 2024), and function as distortionary taxes (Zodrow

and Mieszkowski, 1986).

2 Construction of National Housing Regulatory Database

In this section, we describe the institutional background and data sources on municipal zoning

codes, describe our approach to generative regulatory measurement in classifying these codes at

scale, provide evidence on the accuracy of our approach, and discuss the scalability and replicability

of our method.

2.1 Municipal Codes and Zoning: Institutional Background and Data

In the United States, local governments are “creatures of the state” subordinate to state control.

Municipal corporations, which include cities, towns, villages, and other local government units,

are authorized by state law to organize and function as local governing bodies. This concept

largely overlaps with the Census definition of “incorporated place”, which we use to organize our

analysis.4 In most states, one of the powers granted to municipalities by the state government is

control over local zoning decisions; indeed, the desire to control local zoning is a primary motive

for incorporation.

Zoning, broadly, consists of two key sets of regulations: land use regulations, which partition

local land into distinct use classes, and bulk regulations, which regulate the physical dimensions and
4In several states the “township” form of government also has jurisdiction in zoning which aligns with the Census

County Subdivision definition.

7



density of buildings in different land use classes. Examples of bulk regulations include: minimum

lot sizes (specifying the smallest allowed area for a buildable lot), lot coverage requirements, front

and side setbacks (mandating minimum distances buildings must be from property lines), height

restrictions, and floor area ratio caps (regulating total floor area relative to lot size). Zoning codes

also specify the process through which development is approved, such as whether development can be

done by right and which governing bodies must approve developments. These regulations combine

to regulate how densely areas can be developed, the size and spacing of buildings, the overall built

form of neighborhoods, and the process through which construction is approved. Other mandates

and requirements, such as parking minimums, further constrain both commercial and residential

development in different areas.5

Municipalities enforce laws by issuing municipal codes which outline local regulation in different

domains. Some regulations apply broadly to all land within a jurisdiction; other regulations (such

as minimum lot sizes) typically vary depending on the specific use class and district (i.e., single-

family zoning, commonly referred to as R-1, or commercial or industrial). These ordinances are

typically updated over time to reflect changes in local regulations and often aggregated by different

companies online.

We source the text of municipal codes from a variety of municipal aggregators, including Ameri-

can Legal Publishing, Municode, and Ordinance.com. These municipal aggregators post municipal

codes and other information on local governments, often at the behest of the local government to

fulfill public posting requirements. Table 1 illustrates the breadth of our sample coverage. In total,

we cover 25% of all municipalities in the U.S. and 6% of all townships. This coverage is skewed to

larger cities, and so of the 76% of the population in the U.S. that live in either a municipality or

a township, we have relevant municipal documents for 63% of the population. Panel B shows our

underlying sources for the ordinances in our sample. American Legal Publishing provides significant

numbers of records in the Northeast and Midwest, Municode provides especially good coverage in

the South and the Midwest, and Ordinance.com provides substantial coverage of the West and

Northeast.6

5States and municipalities also enact building codes, which govern the building and safety standards that new
construction needs to adhere to.

6When a municipality hosts its ordinance on multiple aggregators, we prioritize Ordinance.com, and then Muni-
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We combine data on these municipal ordinances with a variety of municipal level demographic,

housing, and economic information such as building permits data from the Census Building Permits

Survey, rent and home price data from the American Community Survey (ACS), and other sources.

We describe the data sources we use in greater detail in Table A1.

2.2 Large Language Models

Large Language Models (LLMs) are a form of artificial intelligence that primarily handle sequential

data such as sequences of words in textual data. LLMs are based on the deep learning transformer

architecture as introduced in Vaswani et al. (2017). The key innovation is the attention mechanism,

enabling the model to focus on multiple words of the input text at once. This helps the model under-

stand words in context, such as sentences or paragraphs. Transformers also represent a significant

advancement in terms of both accuracy and runtime over previous models like Recurrent Neural

Networks, which processed sequences linearly. LLMs are trained with semi-supervised learning,

first pre-training the model on a large corpus of text and subsequently fine-tuning the model with

human feedback. After training, LLMs can generate human-like text, answer questions, summarize

text, and generalize from their training to perform tasks they were never explicitly trained for, a

concept known as zero-shot learning. This means that the model does not require explicit examples

of additional training to perform well in an out-of-sample exercise, a key advantage we use in our

analysis.

LLMs have several advantages and disadvantages in our setting. The central advantage is scal-

ability at low cost: we are able to load large quantities of municipal code data for classification and

analysis, which exceeds the capacity of a typical human team to analyze at reasonable cost. Other

advantages include the prospect for additional training, allowing for increased accuracy over time

as LLMs improve in quality and additional training data is incorporated into the analysis. Another

key benefit is creating a comprehensive and nationwide dataset resulting from the application of a

uniform and standard set of criteria for analysis, rather than relying on a group of human analysts

who may employ idiosyncratic legal interpretation.

Drawbacks in using LLMs for this purpose include potentially inaccurate measurement and the

code over American Legal Publishing.
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need for manual sourcing of relevant documents. Inaccurate measurement stems from a failure to

locate or interpret the relevant sections of legal code. LLMs can only process a limited amount of

text at once, and so they require a reliable process to locate the most relevant parts of the ordinance

for a given question. Additionally, legal interpretation requires many assumptions and nuances, and

even though LLMs are likely exposed to legal interpretation in their training, they may need to be

reprompted on them to ensure greater focus for the questions at hand. Even current state-of-the-

art LLMs may inadvertently produce incorrect information, generate information with an incorrect

degree of certitude, and potentially manufacture data output (“hallucination”). Possible biases in

the responses are linked to the quality of training data, prompting, and multi-step processing steps,

and so measurement error may or may not be classical depending on the explanatory variable of

interest. Finally, relevant information to answer zoning regulation questions may be found in other

legal documents. We provide the LLM with the municipal zoning ordinance for each municipality

but not other potentially useful documents (i.e., state or county laws). We address these drawbacks

by focusing on questions that can be answered with only a municipal zoning ordinance, developing

a process to isolate relevant text along with background information about interpretation, and

measuring performance against human-defined categorizations of regulation to quantify sources of

errors.

Despite these drawbacks, several applications of LLMs for legal analysis suggest considerable

promise. Private sector firms specializing in legal-focused LLM applications have achieved high

valuations7 and several local governments have found success using LLMs to aid residents in un-

derstanding laws and procedures.8 Moreover, randomized controlled trials have shown that LLMs

causally increase lawyer productivity (Schwarcz et al., 2025).

2.3 Processing Municipal Codes Using LLMs

In this subsection, we outline the general process we use to generate our housing regulatory dataset,

a process we refer to as generative regulatory measurement. Figure 1 also illustrates the overall

approach.
7Harvey AI, which uses LLMs to assist lawyers, reached a $3 billion valuation after a Series D funding round.
8For example, Williamsburg Virginia found that AI powered chatbots answered 79% of user queries without the

need for human assistance.
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The first step of our process is to download the sources of municipal codes listed in Table 1,

which provides us with a large corpus of zoning documents relevant for our analysis. We collected

these ordinances throughout Fall 2023, providing us a snapshot of zoning ordinances at that time.

These municipal codes contain detailed housing and zoning regulations relevant for our study.9 Any

images of tables are transcribed using Amazon Textract.

The lengths of many zoning documents exceed the context windows usable by current LLMs10

(see Appendix Figure A1 for a histogram of token length across our entire sample compared with

the maximum token length for various LLMs). As a result, it is either impossible or cost-prohibitive

to simply upload the entirety of municipal code documents into standard LLM services and ask our

questions directly. Moreover, LLM performance significantly declines with context length, rendering

the effective context length of LLMs well below the length of municipal codes (Modarressi et al.,

2025). This is due to limitations in the attention mechanism, which struggles to retrieve relevant

information as context length increases.

To address this challenge, our second step is to use a standard framework in computer science

known as “retrieval-augmented generation” (RAG) (Lewis et al., 2020). The basic objective of this

approach is to combine a large pre-trained language model with external information retrieval, in

order to give the LLM the ability to “look up” information from a vast corpus of text during the

generation process. We describe in subsection 2.6 the accuracy and cost implications of this choice.

In order to implement RAG, we first partition each ordinance into small chunks of text taking

into account the hierarchical section structure of the ordinance.11 Next, we map each chunk of

text into a vector representation called an embedding. Embeddings are vector representations

of text trained to minimize the distance between semantically similar content, allowing efficient

comparison of text meaning (Reimers and Gurevych, 2019). We vectorize each subsection of the

ordinance document using the OpenAI ‘text-embedding-3-large” algorithm.
9Ordinances sourced from Municode and American Legal Publishing are general municipal ordinances covering

topics ranging from permits to purchase a pet to local election processes. Some of these general municipal ordinances
do not include a zoning section, instead referencing separate zoning ordinance. We filter out such ordinances which
do not contain zoning information by searching for key phrases in zoning documents, like common table headers (i.e.
“Table of Uses”) or zoning district names (i.e., R-1 for the first residential zoning district)

10Several large cities exceed the maximum commercial model limit of 2 million tokens: for example, New York
City (17.1 million), Detroit (4.3 million), and Atlanta (3.6 million).

11We download each section within an ordinance separately, and then further split or combine sibling sections so
that their length ranges between 50 and 1,000 of text. One token is roughly 3/4 of a word.

11



The third step in our process is to prepare a set of questions that we want to ask of our sample.

We begin with the question base already used by the Pioneer Institute (i.e., “Is multifamily zoning

allowed in this area as-of-right?”). We add to these questions four additional questions about the

process determining construction permitting and approvals. In the initial step of our process, we

simply use the text of the questions verbatim as first posed by the Pioneer Institute (or the first

draft of the additional process question). The text of the questions is also run through an embedding

process to generate its own vector representation.

The fourth step of our process is to identify the most likely relevant information from the

ordinance to show the LLM. We use cosine similarity, a standard measure of vector distance, to

rank each text chunk by proximity to the question.

The fifth step is to refine the initial ranking of the most relevant text produced by cosine

similarity and double-check for accuracy. We do so by using a cross-encoder reranking model on

the top 50 chunks of text, which processes the question and section text pairs simultaneously to

determine the most semantically similar sections.12 Reranking has been shown to increase retrieval

performance (Anthropic, 2024). We then select text to show the LLM in order of highest relevance

until a threshold. We choose 4,000 tokens (∼3,000 words) as the threshold, since LLM performance

significantly degrades beyond this length (Modarressi et al., 2025). The final output of this step is

the set of 4,000 tokens representing the text in the initial document that is relevant to answer each

question.

The sixth step in the process is the LLM query itself. We provide two key pieces of information

to the LLM through an API call. First, we include 4,000 tokens of relevant text. Second, we provide

the zoning question. Both pieces of information are provided in a single call to the LLM, in order

to produce model output which is our answer. Each answer consists of an open-ended argument

followed by a parsable answer (i.e. “Yes” or “No”). The open-ended answer allows for humans to

audit the reasoning path of the LLM and has been shown to increase performance by providing

space for the LLM to think out loud (Zhang et al., 2022).

These six initial steps are sufficient to produce an answer to each regulatory question sourced
12We use the Cohere reranking model for this step. For some questions, when double-checking the answer we

instead use keyword inclusion to rerank. See Appendix Section C for more details on which questions we do this for
and which keywords we check for.
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from municipal documents. However, they are not necessarily very accurate. Subsection 2.6 de-

scribes in more detail the accuracy for this specification and each iterative improvement. As a

result, we followed a data-driven process to iterate and improve the accuracy of our approach. We

used three distinct strategies which we describe in more detail below: prompt chaining, prompt

engineering, and providing detailed question background information. To avoid overfitting, we con-

ducted all such training on a distinct subsample of the Pioneer data, and then performed our final

validity checks only once on a leave-out sample of the Pioneer data.

The first strategy is prompt chaining, which we used to produce additional information necessary

to help answer each question. Prompt chaining breaks down LLM queries into multiple steps

(prompts) where the output from one prompt is used as input in the next.13 For instance, when

asking about the largest frontage requirement for all single-family residential districts, we first

ask the LLM to name all districts which allow single-family housing. We do this as a separate

step because the relevant text defining allowable uses in a district and the text defining frontage

requirements for districts are typically in different sections of the ordinance with distant embedding

vectors. Additionally, LLM performance is enhanced when it is only required to answer a direct

single step question in each call (Khot et al., 2023).

Another use of prompt chaining is through the post-processing of certain questions, which func-

tions to double-check answers. For instance, the answer “Yes” to a question about whether town-

houses/attached housing is allowed typically means the LLM has found affirmative evidence that

such housing typologies are allowed, while an answer of “No” signifies either a lack of approval, or a

lack of sufficient context for the LLM to answer the question. In such cases where an answer could

indicate lack of information, we reprompt the LLM and directly use keywords like “townhouse” or

“attached” to refine and rerank our search (instead of the reranking algorithm).

A second strategy of model improvement is to generate additional background information to

provide to the LLM. The background information and model assumptions were initialized based on

the Pioneer study (their “Issue Overview” and “Research Coding” sections for each question) when

possible and were LLM generated otherwise. We manually refined this background information to

address areas of misinterpretation by investigating cases in which regulations were misclassified.
13See Anthropic Prompt Chaining Guide for further details on prompt chaining, as well as Wu et al. (2022).

13

https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-prompts#example-analyzing-a-legal-contract-without-chaining


Appendix C contains full information on the original Pioneer questions, our rephrased questions,

as well as the additional background information and assumptions provided.

The third dimension of improvements comes from prompt engineering. We include a “system

prompt” which tells the LLM that it is a municipal zoning expert, details what the structure of

the prompts for particular questions will be, and instructs the LLM to think “step by step” to

induce chain of thought reasoning (Zhang et al., 2022) 14. Additionally, we rephrase the questions

from the original wording provided by the Pioneer Institute in order to produce a more simplified

version which is easier for the LLM to parse. This primarily consists of breaking down compound

questions. We did so through a data-driven approach in which we categorized model errors through

more simple questions, and iterated on simplifications of questions to produce more accurate results.

As mentioned above, our final validation estimates are free of any overfitting bias because they were

estimated on a different set of municipalities than the ones which we used for training in this

purpose.

2.4 Simple Example to Illustrate Approach

To help illustrate our process more concretely, we go through our general procedure for one question

in our sample in Arlington, Massachusetts on the presence of inclusionary zoning mandates or

incentives. In this case, the question used by the Pioneer Institute was sufficiently concise and clear

that we did not need to modify it. This question reads:

Question: Does the zoning bylaw/ordinance include any mandates or incentives for

development of affordable units?

To answer this question in this municipality, we first partition the ordinance into chunks. We

follow the hierarchical structure of the ordinance document when possible, which means that chunks

are typically discrete sub-sections of the ordinance as seen in Appendix Figure A2 for Arlington.

Second, we embed each chunk as well as the question. Panel A of Figure 2 visualizes a two-
14See Appendix Section C for exact system prompts for each type of question.
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dimensional approximation of this embedding space. Each dot represents one chunk of text and is

colored by its broader article in the ordinance. Reassuringly, we find that chunks within the same

article cluster together, which suggests that embeddings are picking up on the underlying meaning

of the text. The black star in the upper right quadrant represents the embedding for the question

itself. RAG selects the chunks of text closest to the question in embedding space for the LLM.

Panel B of Figure 2 zooms in on the embedding space around the question and shades each dot

by its cosine similarity with the question vector. Our approach first isolates the nearest chunks of

text, and then reranks these results. The closest subsections to the inclusionary zoning question

are indeed the relevant sections of the ordinance on affordable housing requirements:

“Section 11.08 - Affordable Housing Requirements Part 1: ...1. Fifteen percent (15%) of

the Residential Units in new Projects shall be Affordable Units...

Section 11.08 - Affordable Housing Requirements Part 2: where more than 50% of the

units are affordable to households ... the number of parking spaces may be reduced to

50% of the requirements.”

Third, we provide these chunks of text, our system prompt described above, along with the ques-

tion shown above, and additional pieces of background information and assumptions to whichever

LLM model that we’re using. In this case, the background information and assumptions given to

the model are as follows:

Background Information: Inclusionary zoning requires or encourages developers to

include affordable dwelling units within new developments of market rate homes. Some

municipalities call it “incentive zoning” ... (omitted for brevity)

Assumptions: Do not include provisions for entirely affordable, subsidized housing

development by public or non-profit corporations. Also do not include provisions under
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“rate of development” headings that exempt affordable units from project phasing and

growth caps.

By providing relevant text and guidance to the LLM, we receive a final classification along with

references for the source of this information:

GPT-4 Turbo Output: The zoning bylaw/ordinance provided does indeed include

mandates and incentives for the development of affordable units. Here’s a breakdown

of the evidence supporting this conclusion:

1. **Mandates for Affordable Housing Development**: The ordinance mandates that 15% of the res-

idential units in new projects be affordable units (Section 11.08, Part_1, d. REQUIREMENTS, 1.).

This requirement applies to all new residential projects, including phased or segmented developments,

with six or more units subject to Environmental Design Review (Section 11.08, Part_1, b. APPLICA-

TION). The affordable units must conform to specific affordability criteria, ensuring they are accessible

to households earning no more than 60% of the median income for rental units and no more than 70%

of the median income for homeownership units (Section 11.08, Part_1, c. DEFINITIONS)...(rest of

answer omitted for brevity)

In this case, the model’s output matches the Pioneer Institute classification of inclusionary

zoning in Arlington, MA.

2.5 Model Validation with Pioneer Data

A critical step in assessing the performance of LLM-based approaches lies in comparing model-

generated classifications against a ground truth benchmark. To do so requires a high-quality anno-

tated reference dataset. The Pioneer dataset serves as an excellent starting point for our purposes,

as previously mentioned, due to the expert classification of a large number of municipalities. The

main drawback in using this dataset is the staleness of responses—with responses categorized as of
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2004. Some regulations have changed in the intervening twenty years, and we have access only to

the most recent zoning ordinances, not the ones that prevailed in that time period. Additionally,

the Pioneer Institute relied on some outside information (i.e., directly contacting local regulatory

bodies) in addition to municipal ordinance text.

To address these issues, we construct a testing dataset based on 30 randomly chosen municipali-

ties from the Pioneer Institute dataset. Importantly, we made sure to leave out these municipalities

from any prior training exercises to avoid overfitting. We also recode these municipalities to 1)

exclude question responses which relied on outside context, and 2) hand-correct inaccuracies in the

original classification.15

Table 2 shows the performance results of our baseline GPT-4 Turbo model against the testing

sample in Massachusetts. Among continuous questions (Panel A), our generated answers have an

average correlation of 0.87 with the ground truth of expert classifications, after winsorization of

our results at the 1% level and corrections of errors in the Pioneer sample. This represents a quite

high benchmark and also incorporates substantial heterogeneity. When asking about the number of

zoning districts in the municipality, we obtain a correlation of 0.98. When asking about the lowest

of residential min lot sizes (i.e., the lot size requirement for R-1 zoned single family homes, an

important zoning question determining allowable density), we find a high 0.92 correlation. These

results suggest we are able to reach high model performance when matching against continuous

numerical outcomes.

We also find high model accuracy when measuring binary questions (i.e., those with a yes or

no answer like whether “multi-family housing is allowed” which we measure perfectly across all

municipalities). As shown in Panel B of Table 2, we observe a model accuracy of 96% across all

binary questions. Because the raw accuracy measure may be biased depending on the base rate

of answers, we also provide a Relative Squared Error (RSE) that compares each model result to a

naive model which guesses the sample mode. We observe quite small RSEs as well.
15Due to the time-intensive nature of the expert correction step, we only check responses in which our LLM

approach disagrees with the Pioneer Institute classification. This means that we potentially overstate model accuracy
in cases in which the LLM agrees with the Pioneer Institute original classification; but that original classification
was wrong.
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2.6 Sources of Model Improvements

In this section, we provide a detailed decomposition of where the accuracy gains come from when

using our approach, both overall and question-by-question. We do so to provide additional intuition

for which aspects of our procedure are most important in improving final accuracy. Additionally,

we also demonstrate robustness regarding important features such as the choice of LLM model.

We run each model five times to calculate the mean and standard deviation of accuracy for each

specification. The results of this investigation are shown in Table 3. The first two columns report

the mean and standard deviation of our accuracy measures, while the third and fourth columns

report the mean and standard deviation of the “I don’t know" rate. Panel A reports results for

continuous questions where accuracy is measured using the correlation with the Pioneer answers

while Panel B reports results for binary questions where accuracy is measured using the share of

classifications that match Pioneer. The different sub-panels report results exploring different aspects

of our procedure, with the first sub-panel exploring the role of different RAG strategies, the second

sub-panel exploring the roles of different prompting strategies, and the final sub-panel exploring the

effects of different choices of LLMs.

The first basic choice we face is whether to use RAG models at all or not. Over our entire national

sample, many municipal codes are simply too long for even the LLM models with the largest context

windows. For these municipalities, RAG models are necessary. Because the municipalities that make

up our core validation sample in Massachusets are shorter on average, we are able to compare the

accuracy of specifications with and without RAG in Table 3. Here, we use Gemini Flash 1.5, a

long context window model.16 We test three specifications: Full RAG, Basic RAG, and No-RAG.

Full RAG follows our main specification, while basic RAG uses a smaller, less powerful, embedding

model17 and does not use reranking. No-RAG provides the entire ordinance to the LLM as context.

For each specification we only provide the question and ordinance text to the LLM, omitting any

of our refinements like prompt chaining or background information.

Ex-ante it is unclear whether using RAG will improve performance. Because RAG only provides
16Gemini Flash 1.5 has a context window of one million tokens, or roughly 750k words. The primary model we

use in our analysis, GPT-4 Turbo only has a context window of 128k tokens or 96k words, which is too short even
for many of the relatively shorter Massachusetts codes we use for validation.

17Specifically we use multi-qa-mpnet-base-dot-v1.
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a subset of the overall ordinance to the LLM, it may omit some critical information. On the

other hand, without RAG the LLM may struggle to interpret the critical sections of text correctly

as performance degrades with input size (Modarressi et al., 2025). In our environment, we find

that RAG approaches demonstrate improved overall performance over No-RAG models for both

continuous questions (Table 3 Panel A) and binary questions (Panel B). For continuous questions,

we observe a dramatic reduction in “I don’t know” responses when implementing RAG (dropping

from 38.7% with No-RAG to 12.9% with full RAG, with particularly strong improvements from

basic to full RAG). Continuous questions typically involve information that is localized to specific

sections of the ordinance, such as in tables. In our setting, therefore, we conclude that refinements

to RAG, such as re-ranking and the size of the embedding model, meaningfully improve retrieval

(Anthropic, 2024); and that the benefits from smaller context windows outweigh the costs of possible

information omission. These findings, combined with RAG’s feasibility benefits and cost advantages,

justify our choice to use RAG for the remainder of the paper.

Next, we examine the impact of iteratively layering the prompting strategies discussed in sub-

section 2.3. For this analysis, we switch to our primary model, GPT-4 Turbo, and use full RAG

throughout. We start with a “no prompting" specification that simply feeds the questions as orig-

inally phrased by the Pioneer Institute along with the context, achieving a correlation of 0.72 for

continuous questions and an accuracy rate of 83.5% for binary questions. We then layer in additional

prompting strategies: first adding prompt engineering, then incorporating background information,

and finally implementing prompt chaining. For binary questions, incorporating background in-

formation yields the largest improvement (from 86.0% to 93.9%), while for continuous questions,

prompt chaining provides the biggest boost (increasing correlation from 0.73 to 0.87). Our main

specification, which uses prompt chaining, reaches 0.87 correlation for continuous questions and

96.7% accuracy for binary questions.

In Table A2, we disaggregate these results to examine how different prompting strategies affect

each question. The impact varies substantially across questions. Some questions, like those about

flexible zoning, achieve high accuracy even without prompting. Others show marked improvements

from specific strategies—wetland restrictions in lot size calculations sees substantial gains from

prompt engineering alone, while questions about affordable housing incentives benefit from both
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rephrasing and background information. For questions like longest frontage requirements, where

relevant information often appears in semantically distant parts of the ordinance, prompt chaining

yields the largest improvements (correlation increasing from 0.46 to 0.70). We also contrast the

baseline approach with estimates drawn from other models in the model selection panel of Table 3.

GPT-4 Turbo, using RAG and our full set of prompting, has the highest correlation for continuous

questions (0.87) as well as the highest accuracy for binary questions (96.7%). GPT 3.5 Turbo is

similar in accuracy for continuous questions, though considerably worse for binary questions, while

Gemini Flash 1.5 is worse for both binary questions and continuous ones.

The key takeaway from our approach towards generative regulatory parsing is that, at least

with models available at the time of writing, model accuracy improves substantially above simple

“zero shot learning” examples given additional human input. We provide substantial human input

in the areas of prompt engineering and providing background information, which helps to direct

the LLM on the relevant focus of the text. Additionally, we design a multi-step reasoning chain for

each question to simplify the tasks required by the LLM in each sub-step. Such additional human

processing is likely necessary in other contexts as well, at least until further advances in LLMs are

made.

2.7 Understanding Model Errors

To better diagnose reasons for model error in our baseline approach, in Figure 3 we provide a

complete decomposition of all of the reasons for disagreement between GPT-4 Turbo and the original

Pioneer Study on binary questions in our testing sample. We categorize disagreements into whether

the Pioneer study was itself outdated or inaccurate, the LLM was incorrect, or the answer is

ambiguous. While ideally municipal regulations would identify a clear and unambiguous answer,

we observe differences even among legal experts hired for the task of hand-classifying regulations.

In principle, the ambiguous or unclear aspects of regulations can also be systematically classified

through LLM-based approaches. Finally, we further divide cases the LLM was incorrect into those

where it missed the relevant text chunks and those where it misinterpreted the context.

Largely, answers from the Pioneer Institute that our model did not match were due to changes
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in the underlying ordinance since the Pioneer Institute study roughly 20 years ago. LLMs missed

the relevant text chunks in two cases, while in four cases the answer itself was ambiguous. The most

important category for our purposes is cases in which the LLM misinterpreted the context—this

happens in nine cases, most often with respect to whether townhouses are allowed and with permit

caps or phasing. Six questions do not exhibit this type of error at all. When considered over a large

sample, these results appear promising in suggesting that errors are typically quite rare.

Importantly, the errors also appear balanced across false positives and false negatives. Appendix

Table A3 provides a confusion matrix comparing our baseline GPT-4 Turbo model against the Pio-

neer classifications, separating true positives, false positives, true negatives, and false negatives. Our

errors are equally represented among false positives as well as false negatives (six each), suggesting

no obvious bias in our classification.

2.8 Additional Validation Checks Beyond the Pioneer Sample

Additional Hand Validation: To assess accuracy outside the Pioneer study Massachusetts sam-

ple, we conducted additional manual validation. First, we reviewed four process questions on a na-

tionwide random sample of 30 municipalities (Panel A of Table A4). This component also enables

us to augment the initial Pioneer set of questions to incorporate additional regulatory questions

related to housing process. After removing ambiguous cases, the model achieved accuracy rates

ranging from 89% to 100% across these questions.

Second, we assessed accuracy on bulk zoning regulations by randomly selecting 30 municipalities

in California (Panel B of Table A4). After dropping ambiguous cases—such as zoning rules that

varied between interior and corner lots—the model achieved 89% accuracy for both measures.

These results suggest that the model generalizes well beyond the Massachusetts-based training

data, performing reliably across diverse regulatory contexts.

Comparison Against WRLURI: We next compare our analysis to another commonly used

dataset of national housing regulation: the WRLURI from Gyourko et al. (2021); we describe this

contrast in more detail in Appendix D. The key takeaways from this investigation are that our

approach improves on WRLURI in both coverage and accuracy. Additionally, our indices consist of
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only hard regulations, while WRLURI loads heavily on housing market outcomes.

A positive, though not perfect, correspondence between generated data and surveys is consis-

tent with prior literature (Lewis and Marantz, 2019) investigating the reliability of survey-based

responses on land use regulation. This paper finds planners have an incomplete understanding of

their own municipality’s regulation, and survey responses across years are inconsistent. Addition-

ally, our data rely on zoning codes from 2023 whereas (Gyourko et al., 2021) uses survey questions

from 2018 and our wording on overlapping questions differs in some cases. Consequently, some of

the divergence likely also reflects changes in the underlying zoning codes over time or differences in

survey wording.

2.9 Scalability and Replicability of LLM Regulatory Analysis

While LLMs hold promise for regulatory analysis based on accuracy, their key advantage lies in scal-

ability and cost-effectiveness, which enable substantially larger systematic analysis of unstructured

textual datasets.

Appendix Figure A3 illustrates the cost comparison between human analysis and two LLM-

based approaches: one using RAG and another without RAG. Our analysis assumes several key

parameters: lawyers require an average of five minutes per question-municipality pair at a rate of

$50 per hour. For the RAG approach, each LLM API call involves 4,000 tokens of text at $0.03 per

query using GPT-4 Turbo pricing. For the No-RAG approach, each API call requires processing

330,000 tokens, reflecting the average length of ordinances in our sample. We analyze costs across

20 questions per municipality. Initial setup costs include $390 per question for model training and

$2.80 per municipality for ordinance retrieval and cleaning.

The RAG-based approach becomes substantially more cost-effective than the human-based anal-

ysis at larger scales, while the No-RAG approach exhibits a cost structure more similar to human

analysis. Human-based analysis shows a linear cost increase as the number of municipalities grows.

The RAG approach has a higher setup cost, but demonstrates significantly better scalability. The

cost curves for RAG and human analysis intersect at approximately 300 municipalities, beyond

which the RAG method becomes increasingly more cost-effective. While both LLM-based ap-
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proaches require similar setup costs, the No-RAG method’s heavy token usage results in steeper

cost scaling, making it less advantageous for large-scale analysis compared to the RAG approach.

Moreover, the LLM approach offers additional benefits not captured in pure cost comparisons.

These include faster processing times (the entire dataset for this study can be generated in under

three days), consistent application of criteria across all documents (while human research assistants

might vary in their interpretation of law), and the ability to easily update analyses as regulations

change.

Another important consideration in adopting LLM-based approaches for regulatory analysis

is the replicability of results. Here we summarize our key findings on LLM replicability, with

complete details provided in Appendix Section B. The key issue is that frontier LLMs are based

on a Mixture-of-Experts architecture that does not provide fully deterministic responses. Using

a sample of 30 municipalities and two questions (one binary question about permit caps and one

continuous question about the number of districts), we experiment with various approaches to

improve replicability, including ensemble methods (requesting multiple responses and aggregating

by majority rule) and varying LLM parameters designed to reduce random variation.

We produce multiple iterations of each model specification to assess its variance across runs.

Specifically, we use the pairwise matching rate across runs as our preferred measure of replicability.

There are two ways to request multiple iterations of output from LLMs: requesting multiple parallel

responses per LLM generation, or requesting the same LLM generation many times. This leads to

two consistency metrics: internal consistency (agreement within a single LLM generation between

its parallel responses) and external consistency (agreement between majority rule answers across

separate LLM generations). External consistency is our primary measure of interest as it captures

replicability across independent runs of the model.

A key choice under the control of the researcher is the temperature, which is a hyperparameter

controlling the randomness of the model’s output. A lower temperature (closer to 0) makes the

model’s responses more deterministic by picking the most probable next token, while a higher

temperature (closer to 1) increases randomness. Not surprisingly, we find that lower temperature

settings generally lead to more consistent responses. With an ensemble size of 10, at temperature

0, we observe an internal consistency score of 90% for the continuous question about number of

23



districts, compared to an internal consistency of 60% at temperature 1, with similar patterns for

external consistency. LLMs also allow users to set random seeds for replicability, though we find

these do not significantly affect consistency scores.

External consistency grows with ensemble size, especially for the continuous question, though

at least 5% of pairwise comparisons do not match even with temperature 0 and ensemble size of

10. Interestingly, internal consistency scores are more predictive of external consistency for higher

temperature models, suggesting that within generation variation at low temperatures may not reflect

the same sources of randomness as across-generation runs.

To maximize replicability, we find a trade-off between a low-temperature single-shot approach

with its high external consistency and cost-effectiveness, and a high-temperature ensemble ap-

proach with at least five iterations for improved reliability. These strategies balance the trade-offs

between consistency, accuracy, and computational cost. Our main specification implements a low-

temperature single-shot approach, prioritizing external consistency and cost-effectiveness. This

approach also reflects our interest in creating a single national dataset, for which consistent inter-

pretation of zoning regulations across municipalities is important. However, for other applications

requiring more creative or diverse output, the high-temperature ensemble approach may be more

appropriate.

3 Characterizing Housing Regulations

In this section, we summarize our comprehensive housing regulations dataset and examine regulatory

patterns within metropolitan areas and across municipalities. This analysis reveals insights into both

the drivers and impacts of different zoning approaches.

3.1 Principal Component Analysis of Housing Regulatory Dataset

Our nationwide dataset consists of 20 questions and covers nearly 6,000 local governments. To

provide context for our analysis of regulatory dimensions, Table 4 presents the key descriptive

statistics for our nationwide housing regulation dataset. The continuous measures in Panel A re-

veal substantial variation in regulatory scope and complexity across municipalities. The average
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municipality has 14 zoning districts, showing considerable regulatory sophistication. Bulk regula-

tions also demonstrate significant stringency, with lowest minimum lot sizes averaging 10 thousand

square feet and longest frontage requirements averaging 92 feet—well above typical urban lot di-

mensions. Process regulations typically involve extended review periods, with maximum potential

waiting times averaging around 7 months. We also show variation in housing process regulations

in Appendix Figure A4, finding that the American West and California in particular appear to

have particularly onerous requirements in terms of waiting times, public hearings, and mandatory

approval steps.

Panel B of Table 4 highlights the prevalence of binary regulatory controls. A notable feature

of housing regulations across municipalities is restrictions on housing density: multifamily housing

is prohibited in 5% of jurisdictions (rising to 10% in high-income areas), and 86% of municipali-

ties restrict conversions to multifamily units. About 37% ban mixed-use developments combining

residential and commercial uses. These restrictive measures generally intensify in higher-income

and more rural areas. The overall pattern suggests significant constraints on housing density and

development flexibility throughout the U.S., with noticeable variation across socioeconomic and

geographic dimensions.

To summarize our nationwide measure of housing regulations, we perform a PCA analysis. This

technique reduces the dimensionality of our dataset by identifying key components that capture a

large fraction of variation across our regulatory questions. Table 5 provides the loadings of each

question on the first five principal components.

The first key takeaway from our analysis is that housing regulations are not well-summarized

by a simple unidimensional level of stringency. The first principal component explains just 13%

of overall variation, while the second principal component explains 11% of the variation. The

fraction of variation explained goes down substantially after this point, justifying our focus on

the first two main principal components. This suggests a more nuanced covariance structure of

housing regulations. In Figure 4 we plot the pairwise correlations between all zoning questions as

a heatmap. Many questions are positively correlated, especially similar types of regulation (i.e.,

comparing different bulk regulations). However, the maximum correlation between any pair of

regulations is below 0.5 and many other correlations are low or even zero; for example, minimum

25



lot size requirements show near zero correlation with flexible zoning policies. Moreover, some of

the correlations have surprising signs. For example, allowing accessory dwelling units (i.e., a less

restrictive regulatory environment) is actually positively correlated with the lowest minimum lot

size and permit and development caps (which both correspond to a more restrictive regulatory

environment). These complicated covariance patterns reflect the diversity of zoning codes created

by local governments, and the wide variety of objectives these governments pursue.

To better understand the economic interpretations behind the two main principal components,

and to disentangle the relative roles of demand and supply in housing production, we show in

Figure 5 the associations between housing construction (building permits), housing cost (median

house prices), and our two key principal components. We interpret the association of these two

principal components with housing construction and cost in light of a simple framework of supply

and demand for housing. In places with rising demand for housing and inelastic supply, home prices

will be high and construction low (the lower-right quadrants of Panels A and B of Figure 5. In

areas with rising demand for housing and elastic supply, there will be high house prices and high

construction (i.e., the upper right quadrant). In places with falling housing demand, there will be

both low construction and prices. In places with elastic housing supplies and constant or moderately

rising demand, there will be low home prices and high construction.

Panel A of Figure 5 highlights that areas with a high value for the first principal component

generally have high house prices as well as construction, while areas low in this dimension typically

have both low prices and construction. This association suggests that the first principal compo-

nent generally coincides with high housing demand environments. This interpretation is supported

by the main regulatory loadings on this principal component (Table 5), which loads heavily on

measures that are typically associated with more developed, high-demand housing markets. For

instance, affordable housing and age restricted provisions are policy tools that are more likely to be

implemented in areas with significant housing pressure and the administrative capacity to manage

complex policies. Other associates of the first principal component relate to additional layers of local

government: maximum review wait times and public hearing requirements. However, areas heavy

in this component are much less likely to have bans or limits on multifamily housing, townhouses,

accessory apartments (ADUs), or flexible zoning.
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By contrast, the second principal component (Panel B, Table 5) associates highly with areas that

have high house prices but low construction, while being negatively associated with areas that have

low prices and high construction. This suggests that while the second principal component is also

associated with higher costs, these higher costs appear to be more related to housing supply shifts

rather than higher housing demand (as appears to be the case with the first principal component).

Figure A5 provides a visual scatterplot representation of the relationship between these two

principal components across U.S. municipalities. The plot also highlights the heterogeneity in

zoning practices across municipalities. Suburban areas around high-demand metropolitan areas

(such as Darien, CT or Billerica, MA) rank highly on both PCs. High-demand urban areas (like

Santa Ana, CA) score low in PC2, but are relatively high in PC1. Low-demand urban areas (like

Cleveland, OH) rank low on both PCs. Finally, exclusionary suburbs of low-demand areas (like

Novi, MI) rank high in PC2 but low in PC1. Figure 6 maps the first two principal components

across the nation, while Appendix Figure A6 shows variation across counties.

We summarize the multidimensional nature of zoning codes as our first fact:

Fact 1. Zoning codes are multidimensional and can be clustered into two main principal components.

3.2 Value Capture and Housing Markets

We next focus on the economic interpretation of these two principal components. We argue the

first principal component can be interpreted as value capture. Value capture in the housing context

refers to mechanisms by which local governments extract a portion of the increased land value or

housing surplus that arises from high market demand. This typically occurs through regulatory

tools that allow municipalities to convert some of the economic gains from private development into

public benefits or revenue. As discussed in the previous section, factor loadings reveal that this

component associates most strongly with regulatory tools like inclusionary zoning mandates (where

developers must include affordable units), affordable housing incentives, and age-related provisions,

which directly reflect tools that exact concessions from developers. Housing process regulations,

such as public hearing requirements and waiting times, also reflect additional wedges or distortions

which are only possible in higher demand environments.
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We further support this interpretation by linking this regulatory dimension to its economic as-

sociates in Table 6, focusing first on the relationships with county-level amenities. These measures

include: an index of retail establishments per capita across industries (constructed by taking the

first PC of industry-level establishment counts), a natural amenity index (capturing features like

temperature and sunlight hours), patents per capita (measuring productivity), and local employ-

ment density (job access benefits). We find that the first PC has a large and statistically significant

positive relationships with all four measures, while the second PC has either small or statistically

insignificant relationships with each. The relationship becomes even stronger for the first PC when

we construct a combined amenity index by taking the first principal component across these four

measures. These results support a housing demand interpretation of this regulatory regime: ar-

eas with higher amenities feature higher housing demand, which generates a surplus that can be

potentially captured through regulation.

We explore a more granular comparison across different types of retail establishments in Ap-

pendix Figure A7. Counties scoring high on the first PC have higher concentrations of consumer

retail outlets (like apparel stores and restaurants) and professional services (including educational

institutions, healthcare facilities, and cleaning services) per capita, while having fewer establish-

ments typically associated with negative externalities, such as gas stations, utility services, and

truck transportation businesses per capita. This pattern suggests these areas are high-demand lo-

cations where businesses can command premium rents (also see Couture et al. (2024)). Further

reinforcing the interpretation of the first PC as reflecting demand-driven amenities, Appendix Fig-

ure A8 shows that the first PC exhibits a high degree of spatial autocorrelation, as captured by

Moran’s I. In contrast, the second PC has very low spatial autocorrelation, suggesting that it is less

influenced by spatially clustered amenities and more likely driven by other economic forces. This

supports the notion that the first PC captures factors that vary smoothly across space, such as

quality-of-life amenities, which naturally exhibit spatial dependence.

We then examine associations of this first PC on other variables, controlling in column 2 for

metro fixed effects. Again consistent with a demand interpretation of this principal component: we

find areas that are high on this dimension have a high college share, more young households, have

lower poverty rates, and have substantially higher shares of Democrats. However, they have higher
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density on some measures (especially multifamily structures; i.e., those with two or more units),

and are also generally larger areas in land units, with more municipalities as neighbors, and closer

to the city center. These associations together suggest that areas high in PC1 are high-demand

areas which may be prone to extraction of value by local governments (Diamond, 2017).

To be sure, such regulations may also affect housing supply. We explore this variable in more

detail in columns 1–2 of Appendix Table A5, adding additional topographical and land availability

controls such as the fraction of land developed in 2001, the squared fraction of land developed in

2001, and the fraction of land with a flat topography. The first principal component is associated

with lower housing elasticities, though the significance becomes marginal once metro fixed effects

are included. This suggests that, despite the raw association of this PC with higher construction, it

represents a bundle of higher taxation which weakly associates with lower housing supply elasticity.

We summarize these patterns as our second fact:

Fact 2. The first principal component corresponds to value capture in high-demand locations. This

component loads heavily on regulations that allow municipalities to extract and redistribute hous-

ing value, such as inclusionary zoning mandates that require developers to include affordable units.

These regulations enable local governments to convert market-rate housing demand into public ben-

efits, and are most prevalent in densely populated cities with high consumption and production

amenities.

3.3 The Role of Exclusionary Zoning

Exclusionary zoning refers to land use regulations that limit housing density and types, often with

the effect of excluding lower-income residents from certain areas. The role of exclusionary zoning

in shaping socioeconomic patterns has been a subject of significant research and debate in urban

economics and policy circles, but accurately defining these practices has been a challenge for the

literature. Our analysis provides new insights into this phenomenon, leveraging our comprehensive

dataset to examine the prevalence, distribution, and impacts across the United States of exclusionary

zoning practices. Regulations commonly linked to exclusionary zoning practices include measures

such as large minimum lot sizes, restrictions on multi-family housing, and other bulk regulations
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that increase the cost of housing in a given area by effectively mandating a minimum amount of

housing or land consumption.

The second principal component of housing regulations identified in this study correlates strongly

with intuitive measures of exclusionary zoning, particularly minimum lot sizes and other bulk regu-

lations that limit density, the loadings for which we show in Table 5. In fact, the highest loading for

this principal component is the smallest residential minimum lot size, a commonly used proxy for

exclusionary practices in general. This regulation sets a lower bound on how small a piece of land

can be for a single housing unit, impacting the potential density of an area. Larger minimum lot

sizes result in fewer, more spread-out homes, while smaller minimums allow for denser development.

They have been frequently estimated in prior research through bunching methods (Cui, 2024; Song,

2021) as important drivers of housing regulations; the contribution of our approach is to measure

these regulations directly from municipal documents, rather than indirectly through their effects

on observed housing development. Figure 7 demonstrates the high frequency of these minimum lot

size regulations specifically; two-thirds of local governments prohibit residential lots smaller than

5,000 square feet across the entire town (Panel A), and nearly half enforce minimum lot sizes of at

least half an acre in some part of their jurisdiction (Panel B). This mandated minimum amount of

housing consumption should effectively truncate the left tail of the housing value distribution by

preventing the construction of houses on small lots of land or apartments.

We then validate our economic interpretation of the second PC by highlighting its effects on

housing affordability. We show municipalities high in the second principal component have sub-

stantially fewer housing units affordable to the state median income household (Panel A of Figure

8). We focus on three key mechanisms driving this relationship. First, exclusionary zoning shifts

the entire housing price distribution rightward, with significantly higher median home values in

high second PC municipalities compared to low second PC areas (Panel B). Second, exclusionary

zoning shifts mass away from the left tail and towards the median of the housing price distribution;

i.e., a left-truncation of the house price distribution corresponding to missing units made unviable

through the presence of minimum housing requirements. In Panel C, we compare the distribution

of home values across granular home value bins for low and high second PC areas. High second

PC areas have relatively more housing units at or right below the median home price and less well
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below the median, suggesting a leaner left tail. We further show in Appendix Figure A9 that this

left truncation is more pronounced in higher median home values areas, and that areas higher in

the second PC have smaller shares of low-income and younger households. The third dimension by

which exclusionary zoning practices limit affordability is on the rental margin. Panel D reveals that

high second PC areas limit the degree of rental housing with a strong correlation of 0.40 between

the second PC and the share of owner-occupied housing. For rental housing, the second PC is

more strongly associated with overall rents than with rent conditional on housing characteristics

(i.e., number of bedrooms, as shown in Appendix Figure A10), suggesting that it further raises

rental prices by shifting the composition of available units. The resulting lack of affordable housing

options results in a strong negative correlation between the second PC and the share of low-income

families (-0.26) and young households under 35 (-0.39).

We further validate that density restrictions impact observed density in Appendix Table A6.

We examine associations between our measured regulations and housing values, building permits,

rents, density, and affordability of local housing units using three approaches: bivariate regressions,

LASSO, and XGBoost. Density restrictions (multifamily bans, minimum lot sizes, frontage re-

quirements) consistently associate with lower observed density. In the XGBoost analysis, frontage

requirements score highest (100), followed by highest (86) and lowest (84) residential lot size re-

quirements. These variables also strongly associate with higher house prices and rents, and reduced

affordable housing availability. This rules out a potentially competing hypothesis that lower con-

struction in these areas is associated with lower demand. When predicting median home values,

multifamily housing prohibition emerges as the most important predictor (100), followed by afford-

able housing mandates (75) and townhouse prohibition (56).

Appendix Table A7 confirms the predictive power of including housing regulations on other

outcomes, such as home value, building permits, rents, density, and affordable housing shares.

Including regulatory variables improves model fit, even with other controls present. XGBoost

consistently outperforms Lasso and OLS, particularly with all variables included, achieving the

lowest RMSE (0.66) for median home value.

We also explore the resulting distributional consequences of these quantity-based housing re-

strictions. Areas higher in the second PC are associated with demographic patterns that suggest
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exclusionary effects. In Table 6 we find that PC2 corresponds to a higher proportion of white,

medium-to-high income, and college educated residents. This suggests racial and ethnic segregation

effects of these policies. This is consistent with prior analyses of zoning as a tool for maintaining

racial homogeneity in the absence of explicit racial covenants (Rothwell, 2011; Cui, 2024). Areas

higher in the second PC also have a relatively higher Republican share of the population, relative

to their metro.

Areas characterized by more exclusionary zoning practices also show higher average math test

scores. This pattern suggests that exclusionary zoning effectively creates enclaves of educational

privilege, where resources and positive peer effects are concentrated. Consistent with a public goods

motive, we also observe higher local revenue per student. These results are consistent with classic

theories of fiscal zoning which emphasize the role of zoning and property taxes in conjunction with

support of local public goods (Fischel, 1987; Hamilton, 1975, 1976).These areas also tend to have

lower property tax rates, suggesting that by limiting the share of cheaper housing, they can maintain

a lower tax burden while still sustaining high-quality and well funded public education (Table A8).

Areas higher in the second PC also show higher causal measures of economic opportunity (drawn

from Chetty et al. (2014)). The presence of such public goods may help to explain the sorting

of higher-income residents in these areas. However, they also point to the socioeconomic costs of

excluding lower-income residents from access to areas with such public goods. We summarize these

associations as our third fact:

Fact 3. The second principal component captures exclusionary zoning practices aimed at restricting

housing density and affordability through bulk regulations. This dimension loads heavily on minimum

lot size requirements and procedural barriers to development, which are concentrated in affluent

suburban areas. These regulations associate with a truncation of the left tail of house prices, lower

construction, and strong sorting on education and income.

3.4 Monocentric City Model and Zoning Gradients

We next interpret municipal regulations in the context of the monocentric city model (Alonso, 1964;

Mills, 1967; Muth, 1971). In these models, there is a central location in each city where production

32



is concentrated and rents decay as one moves away from this productive center, with the rate of

decay governed by transportation costs. These dynamics may also affect the benefits and costs of

zoning regulations at different distances from the city center. Housing regulations, in turn, may

then affect the rent gradient as one moves away from the city center.

We show various regulatory variables along the dimension of distance to city center in Figure 9.

Affordable housing mandates are decreasing in distance from the center of the city, illustrating that

these regulations are most commonly found at the centers of cities.

Minimum lot size requirements show a different pattern, and vary markedly across regions.

While minimum lot size requirements are higher in suburban areas on average, this relationship is

particularly driven by the Northeast and Midwest regions. To further illustrate these patterns at

the metropolitan level, Figures 10 and 11 show maps of minimum lot sizes and affordable housing

incentives, respectively, for jurisdictions within the metropolitan areas surrounding four select cities

in the U.S., Atlanta, Chicago, Philadelphia, and San Francisco.

These graphs document substantial variation in both minimum lot sizes and affordable housing

mandates and incentives within metropolitan areas across municipalities, with the central city and

inner suburbs having lower minimum lot sizes and higher rates of affordable housing policies than

in jurisdictions farther from the central city. We observe strongly increasing minimum lot sizes

away from the city center towards suburban areas in Chicago and Philadelphia, but this pattern is

less pronounced in other regions of the country. This figure also illustrates a key advantage of our

approach: the ability to construct measures of zoning ordinances at the level of the municipality

across a wide variety of municipalities and regions in the United States.

In Table 7, we explore the relationship between distance from the city center and regulatory

stringency for all of the housing regulations that we measure and both the first and second principal

components. The first four columns show these relationships between regulations and distance from

city center by region, while the final column shows the relationship for the U.S. as a whole. Across

all regions, we observe that the number of zoning districts decreases robustly with distance from the

city center, suggesting simpler zoning structures in more peripheral areas. This pattern is consistent

across all regions but is particularly pronounced in the Midwest and South. Some components of

allowable density decrease with distance from the center, especially the permission of townhouses
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and mixed-use development. Interestingly, the allowance of multifamily housing shows a positive

correlation with distance in the West and South, contrary to the general expectation of decreasing

density with distance. This might reflect the presence of suburban multifamily developments in

these regions.

The Northeast stands out with several distinct patterns. Unlike other regions, it shows increasing

restrictiveness with distance for several measures. For instance, the longest frontage requirement,

highest residential minimum lot size, and mean residential minimum lot size all increase with dis-

tance from the city center in the Northeast, while these measures show no significant relationship in

other regions. These results highlight the unique regulatory landscape of the Northeast, where bulk

regulations and exclusionary zoning practices appear to intensify in suburban and exurban areas,

contrary to patterns observed in other regions. These results are also especially surprising in the

context of well-developed public transit and highway links in this area, which should, all else equal,

facilitate greater development and density even outside of city centers in this region.

Several factors may help to explain this regional variation. The Northeast was the first region

of the U.S. to urbanize and industrialize, allowing for greater development before the advent of

zoning. Many of its suburbs were established earlier than in other regions, often as affluent enclaves

seeking to preserve their character against urban expansion (Fischel, 2015). In addition, the region

is characterized by a highly fragmented system of local governments, with many small, independent

municipalities. This structure facilitates more localized and potentially more restrictive zoning

policies. These suburbs also have a strong home rule tradition of local control over land use decisions.

The Northeast’s early experience with industrial pollution and urban congestion may have fostered

a culture of environmental protection that manifests itself in stricter land use controls, particularly

for suburban lot size requirements, which were commonly justified on the basis of preserving natural

land. Finally, the region has had particularly strong fights over access to local schools (i.e., school

busing (Angrist et al., 2022)) that can increase the use of exclusionary zoning practices to maintain

local school districts by limiting access to lower-income and minority households.

In contrast, California, which also has high house prices and where housing regulation is com-

monly thought to be tight, appears surprisingly to have more nationally typical bulk regulations.

We show a map representation of these regulations in Figure 6, which highlights the high minimum
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residential lot size requirements in the northeast relative to California. In contrast, California’s

housing market is heavily influenced by state-level regulations such as environmental reviews and

an onerous permitting process. We find some evidence of this in Appendix Figure A4, which shows

that California has the highest potential waiting time for review of a typical new multi-family build-

ing (see Mayer and Somerville (2000) for a link between regulatory uncertainty and reduced con-

struction) and highest prevalence of public hearing requirements for multi-family buildings. These

results therefore suggest that while the Northeast and California have high housing costs, they

are the result of very different factors that may call for different policy responses. Furthermore,

California’s housing market faces significant constraints due to its challenging topography (Saiz,

2010), which limits developable land, and the high demand for natural amenities and local jobs.

These factors can create a situation in which even relatively less restrictive local bulk regulations

can result in binding constraints on housing supply, especially in combination with a challenging

permitting process.

To explore the drivers of exclusionary zoning practices in the Northeast further, we follow

(Glaeser and Ward, 2009) who connected minimum lot sizes drawn from the Pioneer Institute

survey in the Boston metropolitan area to historical variables: particularly historical density and

industrial production. The key conclusion from that analysis is the gradient between minimum

lot sizes and distance to city center (Boston) was largely explained by the fact that low density

areas historically (in 1940) were able to adopt minimum lot size requirements, and thereby stay low

density. We are able to expand the scope of this analysis to a much broader set of municipalities

across the nation.

In Table 8, we show the key object of interest—regional gradients of minimum lot size against

distance to city center—across a range of controls. Our initial specification reveals that the North-

east and (to a lesser extent) the Midwest feature substantially higher minimum lot sizes as distance

to city center increases, a relationship which actually strengthens after controlling for a fixed effect

for the nearest metropolitan area. However, we are able to partially account for these gradients by

controlling for a variety of historical variables, drawn from 1940, which capture density, manufac-

turing output, and demographic variables in that period. Our preferred specification, in column

(7), controls for an interaction of historical municipal-level density with county-level industrial pro-
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duction. This specification allows for the possibility that low-density areas near high industrial

production regions adopted more strict minimum lot size rules, which explains the overall gradient.

This specification reduces the regional gradient by 40–50%, depending on whether we measure dis-

tance as a raw number or a log. We are able to explain an ever larger fraction of the raw gradient

in a final specification which controls for a large battery of historical variables.

To shed additional light on this finding, we show in Figure 12 the key mechanisms driving this

result. In Panel A of this figure, we show the minimum lot size, at the municipality level, as a

function of relative density compared to their MSA-average in 1940. We see a strong pattern that

Northeastern municipalities with less density than their local average exhibit substantially higher

minimum lot sizes, while Northeastern municipalities with higher than average density do not exhibit

any unusual pattern for minimum lot sizes. In Panel B of this figure, we show the coefficient of

historical density against minimum lot size for a sample of the top 30 metropolitan areas. We see

that historical density is very strongly negatively associated with minimum lot sizes in Northeastern

and Midwestern areas, but not in the rest of the country. Appendix Figure A11 also shows a non-

parameteric relationship of distance to city center and minimum lot sizes to highlight the skewed

pattern in the Northeast, and also highlights the high manufacturing share of employment in this

region.

Our findings confirm that the relationship that (Glaeser and Ward, 2009) found also broadly

applies to industrial centers across the Northeast, and to some extent in the Midwest. However,

it does not apply to the West or South regions, where the average level of minimum lot sizes

are far lower, and they do not exhibit the same gradients with respect to distance to city center.

These more restrictive zoning regulations have reinforced historical density patterns, as shown in

Appendix Figure A12, which shows the correlation between 1940 and 2019 housing unit density is

highest in the Northeast and weakest in the South. Therefore it appears that the Northeast locked

in a particular pattern of spatial development, which is then highly persistent over time.

There are several potential factors which could explain this result. Less dense areas in the

vicinity of industrial centers in the Northeast and Midwest could be averse to industrial pollutants;

they may have been motivated by social exclusionary factors against industrial workers (who were

disproportionately immigrant and non-white, see Cui (2024)); and the spread of industrial produc-
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tion through automobile traffic may have made such areas adopt stricter zoning to thwart direct

industrial spillovers, as suggested by Fischel (2015). While a deeper exploration of this pattern is

outside of the scope of the current paper, this finding is consistent with several plausible channels

connecting industrial spillovers and exclusionary motives, and we formally consider this channel in

the context of our model in Section 4.

Our findings on spatial patterns of zoning have important implications for urban economic mod-

els. While the general relationship between regulatory intensity and distance from city centers is

broadly consistent with standard monocentric city models (i.e., Rossi-Hansberg (2004)), the strong

sorting of high-income households into expensive, strictly regulated suburbs is more of a challenge

for these frameworks. Traditional models predict that all households prefer central locations to

minimize commuting costs, with wealthier residents outbidding others for scarce urban land. How-

ever, the high market values of suburban housing and the willingness of affluent residents to accept

longer commutes contradict these predictions and represent a recognized challenge to urban eco-

nomic theory (Glaeser et al., 2008). This spatial pattern is more pronounced in the United States

compared to other countries, where it is more typical for wealthy residents to reside in the city

center, and appears particularly pronounced in the Northeast. Our results suggest that this sorting

is accompanied by regulatory restrictions on the minimum allowable housing size, which truncates

the housing size distribution to the left, and results in sorting of higher-income residents to distant

suburbs against the typical pattern expected in the monocentric city model. We summarize these

patterns as our fourth and final fact:

Fact 4. Zoning regulations generally follow a monocentric pattern, with value capture tools predom-

inant in city centers and exclusionary zoning practices intensifying with distance from urban cores,

a pattern most pronounced in the Northeast where suburban areas employ particularly strict density

restrictions.
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4 Discussion and Framework

4.1 Model Framework

Having established several key findings on housing regulatory variation across the United States,

we next interpret these empirical findings through a model of inter-municipal competition. In our

framework, local governments strategically select housing regulations. A more complete version of

the model is discussed in Appendix E.

The model features households sorting across locations with two different regulatory regimes

intended to proxy for our first two principal components. The key elements include:

Agents and Locations: The economy contains two types of households differentiated by pro-

ductivity: high-wage (H) and low-wage (L), earning wH > wL. Households choose between two

distinct zones: city centers (c) and suburbs (s). Each zone offers different amenities (αc, αs) and

implements different regulatory environments. Housing supply in each zone is somewhat inelastic,

such that local rents ri are increasing in housing demand and population.

Government Policies: Local governments in each zone i ∈ {c, s} impose two types of taxes:

a uniform wage tax τ and zone-specific housing taxes ti, which are intended to proxy for value

capture regulations. These correspond to our first principal component of housing regulations, and

the interpretation is that regulations such as mandatory inclusionary zoning can be seen as an

additional implicit taxes. In principle the proceeds could be either redistributed to other residents

(as in the case of affordable housing units), captured as private benefits by local policymakers, or

else extracted by the government for the purpose of public goods. We assume these benefits can be

extracted without penalty to produce government revenue. With these revenues, they provide public

services si using labor inputs Gi (compensated at the low-productivity wage), while maximizing net

revenue. Additionally, governments can impose minimum housing requirements hi, which proxy for

exclusionary zoning requirements.
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For a household of type j in zone i, utility is given by:

U j
i = max

c,h
γ log c+ (1− γ) log h+ αi − log(Ni) + log(si).

This optimization is subject to the budget constraint:

c+ h · ri = (1− τ) · wj

Local governments maximize revenue:

max
Gi,ti,hi

[τ + (1− γ) · ti] · (wL ·NL
i + wH ·NH

i )− wL · log(Gi)

subject to the minimum housing constraint (hj
i ≥ hi) and a positive earnings condition for local

governments. Production opportunities are equally accessible from both zones, so there are no

reasons to sort for increasing wage income.

In spatial equilibrium, households sort across zones until indifferent at the margin, yielding:

[αc − αs] + log
sc
ss

= (1− γ)

[
log

rc
rs

+ log
1 + tc
1 + ts

]
+ log

Nc

Ns

(1)

i.e., that the benefits of locating in one zone (based on local amenities and government services)

equal the costs of rents, housing taxes, and congestion disamenities.

4.2 Optimal Policy Conditions

Exclusionary Zoning: Minimum housing requirements (hi) become binding when they increase

revenue by attracting high-productivity households:

∆hi

(
∆ηiNi ·

[
ti
∂ri
∂ηi

+ τ
∂w̃

∂ηi

]
+∆Ni ·

[
tiri + τw̃i +Niti

∂ri
∂Ni

])
≥ 0.

For Ñi = wL
i ·NL

i +wH
i ·NH

i as the “effective” population, and similarly w̃i = wH
i ·ηi+wL

i ·(1−ηi)

as the effective wage, and ηi =
NH

NH+NL as the high-income share of total population.
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The intuition behind this condition is that exclusionary zoning practices affect local govern-

ment revenues through two channels. The first term in this equation captures the gain to local

governments from attracting a higher share of high-income workers. These workers are increasingly

attracted to areas with minimum lot size requirements because they are subject to lower congestion

disamenities. However, the loss in population also reduces local government revenue in the second

term.

Value Capture: Housing taxes (ti) become optimal when tax revenue gains outweigh population

losses:

(1− γ) · Ñi +
∂Ñi

∂ti
[τ + (1− γ) · ti] ≥ 0.

Proposition 1. Urban Value Capture: City cores c prioritize revenue extraction (tc).

In the model, city cores choose a positive housing tax requirement tc to maximize local revenues,

and pick no exclusionary housing requirement. The intuition is that city cores have a sufficiently high

population of low-income workers, so the income losses from an exclusionary housing requirement,

and the resulting loss of the low-income population, would exceed gains from gaining high-income

population share. However, if city cores have sufficiently high amenities relative to suburban areas

(αc − αs), from indifference equation (1) we see this amenity differential can offset higher housing

costs, taxes, and congestion disamenities in the city core. This gives urban centers leverage to

extract value from housing and residents without depopulating the area.

Proposition 2. Urban zones with higher amenities (αi) have more revenue extraction.

This proposition follows a similar argument as the previous one. The core intuition is that

higher amenities increase residents’ willingness to pay for housing, generating economic rents which

governments can profitably tap into. Again from equation 1 we see that households accept higher

housing costs (both due to rent and additionally due to governments value capture taxes) because

these are offset by higher amenities. Therefore, the optimal ti rises with αi: urban centers with

higher amenities can impose even higher taxes without losing residents, because leaving entails

losing access to valuable local benefits.

Proposition 3. Suburban Exclusion: Suburbs s adopt stricter bulk regulations hs.
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The key difference between urban cores and suburban areas lies in population composition:

when suburban areas have a substantially smaller population relative to urban cores, they are in

a position to shift to a completely concentrated tax base consisting only of high-income workers

through exclusionary zoning. The trade-off is that such strict bulk regulations limit the total number

of households (Ns), which lowers income-based tax revenue. However, this loss in quantity can be

offset fiscally by an increase in per-household tax contribution, and also results in lower congestion

costs, which results in an additional motive for high-income workers to move to suburban areas.

Proposition 4. Suburban areas with fewer amenities have weakly stricter bulk regulations.

In the model, local amenities and exclusionary zoning can work as substitutes. This situation is

not relevant if the local government is already at a corner solution and has implemented a minimum

house size requirement to exclude all low-income residents. But if a suburban area is indifferent

between imposing such a restriction or not, lowering the presence of amenities will encourage the

municipality to implement such policies. The intuition is that a low αs raises the marginal benefit of

exclusion (i.e., attracting rich households), because the suburb can offset low taxation in quantities

by improving the quality of the tax base.

4.3 Connecting Model Predictions to Empirical Findings

Our first and third propositions relate to the spatial locations of housing regulations, which closely

align with where we find them in the data The value capture motive for housing regulation shows

up most strongly in the centers of American cities, where demand for living is highest and so the

ability for local governments to extract value is correspondingly higher as well. Consistent with

this result in the model, we find empirically that areas high in the first principal component are

substantially larger, and also appear to be somewhat more centrally located.

By contrast, exclusionary regulations in the model are exclusively a suburban phenomenon, and

this is also a finding of our data. We find that bulk regulations and the second principal component

are commonly found in suburban areas in the peripheries of those cities across the United States, but

are particularly pronounced in the Northeast. These spatial regulatory pattern contributes to the

sorting of Americans along the dimensions of age and income. Cities are home to poorer residents
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that need access to smaller housing, wealthy residents, as well as younger working households. By

contrast, suburban areas with exclusionary zoning requirements are more typically home to richer

households, despite high commuting costs.

Our results help to connect classic previous theories of zoning. (Fischel, 1987) and (Hamilton,

1975, 1976) argue that housing regulation and property taxes can create efficient public goods provi-

sion in the context of (Tiebout, 1956) sorting. By contrast, (Zodrow and Mieszkowski, 1986) argue

instead that local taxes are distortionary and function like excise taxes, while more recent scholar-

ship has emphasized the segregation motives of zoning, especially exclusionary zoning (Rothstein,

2017; Cui, 2024). Our two sets of regulatory controls by municipalities spans this prior literature,

and helps to explain the circumstances under which housing regulation can appear extractive, and

the conditions under which they sustain local public goods investment under exclusionary environ-

ments.

Our model also makes additional sets of predictions on the extensive margin of such regula-

tions, which also line up with our empirical findings. Proposition 2 predicts that greater amenities

should predict higher value capture, which is an extremely strong pattern in our data as well

across amenities measured through different methods (natural amenities, consumption amenities,

and productive/job amenities). This close alignment between empirical and model results here

helps to further justify our interpretation of the first principal component as being primarily about

demand and about extracting value.

The model also helps us interpret our fourth fact concerning the regional nature of exclusionary

zoning patterns. In the model, exclusionary zoning can emerge in suburban environments exposed to

negative amenities. Our empirical results suggest that the strongest patterns of exclusionary zoning

emerged historically among Northeastern (and to some extent Midwestern) municipalities exposed

to local manufacturing. While we cannot separate the specific role of industrial pollutants and direct

spillovers versus exclusionary motives around the presence of manufacturing workers (many of whom

were immigrants or non-white); all plausible mechanisms entail such early industrialization exposing

smaller suburbs to some set of negative disamenities. Our model helps therefore reconcile the

motives for why such municipalities may pick exclusionary zoning as a response to this disamenity

shock.
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5 Conclusion

Our paper introduces a new methodology we refer to as generative regulatory measurement, which

leverages LLMs to systematically interpret municipal zoning regulations at scale. Our results demon-

strate that state-of-the-art LLMs can achieve near-human levels of accuracy in classifying zoning

rules from textual documents, with accuracy levels of 96% for binary questions and correlations of

0.87 on average relative to existing hand-classification from the Pioneer Institute. This generative

regulatory measurement approach therefore enables the creation of a comprehensive, publicly avail-

able, nationwide dataset of municipal zoning regulations. By leveraging LLMs to extract structured

information from unstructured textual data, our methodology opens up new avenues for analyzing

vast amounts of previously untapped regulatory documents across multiple domains. With further

development, this generative regulatory measurement framework can be extended to other cate-

gories of housing regulation (for example, to building codes), regulations in other domains, and

even regulatory systems across different countries and languages.

By combining this measurement with a theoretical framework, we establish four facts about

housing regulation. Municipal zoning regulations are not well-summarized by single dimensional

measures of strictness, reflecting the myriad ways municipalities have designed their zoning codes.

We focus on first two primary regulatory dimensions in the data: value capture and exclusionary

zoning. We find that urban cores, especially those with higher amenities, implement value capture

regulations to extract housing surplus in order to fund other public goods. Conversely, subur-

ban municipalities often adopt exclusionary zoning and strict bulk regulations, especially in the

Northeast and Midwest, a pattern which we connect to historical exposure to industrial production.

Our findings highlight the broader consequences of housing regulations on socioeconomic sort-

ing and affordable housing. Suburban practices of exclusionary zoning truncate the left part of

the housing price distribution, which effectively prices out lower-income and minority households

from areas with high-quality public services. Such households sort instead to urban cores, which

also feature elevated housing costs due to extractive housing regulations. Our findings therefore

underscore the importance of zoning regulations as tools used by municipalities to manage growth,

capture value from residential demand, and impact demographic composition.
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Tables

Table 1: Sample Coverage

Panel A: Sample and Local Government Coverage Metrics

National Northeast Midwest South West
Coverage Metrics:

Total Munis 19,488 2,101 8,481 6,587 2,319
% of Munis in Sample 25 32 19 22 48
Total Townships 16,213 4,111 12,102 0 0
% of Townships in Sample 6 23 0 - -
Total Pop. (Millions) 331 57 69 127 77
% of Pop. Under Local Gov. 76 100 95 55 78

Panel B: % of Pop. Under Local Gov. Covered By Sample

National Northeast Midwest South West
Ordinance Aggregator:

American Legal Publishing 11 15 15 6 8
Municode 23 1 19 54 12
Ordinance.com 30 52 12 1 60
Total 63 68 46 61 80

Notes: This table highlights our sample coverage across region and data source. For local governments available in multiple datasets,
we prioritize using Ordinance.com and then Municode and reflect that in the population count. We also adjust for geographical overlap
between townships and municipalities in tallying population by using census block level population data and corresponding shape files.
We use population estimates from the 2022 Census of Governments for municipality population, and 2022 State-Level Census Population
Data for census region and national population.
Links to data sources are American Legal Publishing, Municode, and Ordinance.com.
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Table 2: Performance Validation for LLM-Generated Zoning Classifications

Panel A: Continuous Questions

Question RSE Correlation

How many zoning districts, including overlays, are in the municipality? 0.06 0.98
What is the longest frontage requirement for single family residential development in any
district?

1.16 0.70

What is the lowest residential minimum lot size? 0.16 0.92

Cumulative Average 0.46 0.87
Cumulative Median 0.31 0.90

Panel B: Binary Questions

Question RSE % Accuracy

Is multi-family housing allowed, either by right or special permit (including through overlays or cluster zoning)? 0.00 100%
Are apartments above commercial (mixed use) allowed in any district? 0.07 96%
Is multi-family housing listed as allowed through conversion (of either single family homes or non residential
buildings)?

0.08 96%

Are attached single family houses (townhouses, 3+ units) listed as an allowed use (by right or special permit)? 0.30 90%
Does zoning include any provisions for housing that is restricted by age? 0.14 96%
Are accessory or in-law apartments allowed (by right or special permit) in any district? 0.09 96%
Is cluster development, planned unit development, open space residential design, or another type of flexible
zoning allowed by right?

0.00 100%

Is cluster development, planned unit development, open space residential design, or another type of flexible
zoning allowed by special permit?

0.00 100%

Does the zoning bylaw/ordinance include any mandates or incentives for development of affordable units? 0.00 100%
Is there a town-wide annual or biannual cap on residential permits issued, and/or is project phasing required? 0.33 90%
Are there restrictions on counting wetlands, sloped land or easements in lot size calculations? 0.14 96%

Cumulative Average 0.11 96%
Cumulative Median 0.09 96%

Notes: This Table highlights our model accuracy by comparing the accuracy of our generated regulatory dataset against a hand-classification by the Pioneer Institute on a hold-out
sample of 30 municipalities. In Panel A, we measure accuracy using a Relative Squared Error (RSE) that compare the model’s results to the naive model that guesses the sample mean.
The correlation column is the correlation between the model answer and the Pioneer Institute answer. We calculate performance metrics and sample means (for RSE) only on the set of
question municipality pairs that GPT-4 Turbo does not say “I don’t know.” We winsorize data from our models at the 1% level but do not winsorize data from the Pioneer Institute. The
Cumulative Average and Cumulative Median are calculated across questions giving equal weight to each question. In Panel B, for Relative Squared Error (RSE) we compare each model’s
results to the naive model that guesses the sample mode. The accuracy column is calculated as the percent of municipalities where the model matches the adjusted Pioneer Institute
answer for each question. We drop any errors where the answer is considered ambiguous. For details on adjustments to the Pioneer data, see Figure 3.
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Table 3: Decomposition of Model Accuracy

Panel A: Continuous Questions

Correlation I Don’t Know Rate

Model Specification Mean Std. Dev. Mean Std. Dev.

RAG Strategies (+ No Prompting)

Gemini Flash 1.5 No RAG 0.74 0.01 38.7% 2.3
Gemini Flash 1.5 + Basic RAG 0.66 0.03 32.7% 1.7
Gemini Flash 1.5 + Full RAG 0.84 0.02 12.9% 0.6

Prompting Strategies (+ Full RAG)

GPT-4 Turbo No Prompting 0.72 0.05 2.7% 0.6
GPT-4 Turbo + Prompt Engineering 0.78 0.05 2.9% 1.3
GPT-4 Turbo + Background Info 0.73 0.11 2.2% 1.4
GPT-4 Turbo + Prompt Chaining 0.87 - 4.4% -

Model Selection

GPT-3.5 Turbo Full RAG + Full Prompting 0.86 0.03 3.8% 1.0
Gemini Flash 1.5 Full RAG + Full Prompting 0.81 0.01 9.6% 1.7
GPT-4 Turbo Full RAG + Full Prompting 0.87 - 4.4% -

Panel B: Binary Questions

Accuracy I Don’t Know Rate

Model Specification Mean Std. Dev. Mean Std. Dev.

RAG Strategies (+ No Prompting)

Gemini Flash 1.5 No RAG 81.0% 1.24 21.1% 1.0
Gemini Flash 1.5 + Basic RAG 84.5% 1.18 22.0% 1.7
Gemini Flash 1.5 + Full RAG 86.2% 0.87 18.6% 0.8

Prompting Strategies (+ Full RAG)

GPT-4 Turbo No Prompting 83.5% 1.4 14.2% 5.3
GPT-4 Turbo + Prompt Engineering 86.0% 0.8 10.7% 1.4
GPT-4 Turbo + Background Info 93.9% 1.0 1.1% 0.2
GPT-4 Turbo + Prompt Chaining 96.7% - 0.0% -

Model Selection

GPT-3.5 Turbo Full RAG + Full Prompting 83.9% 0.6 3.1% 0.7
Gemini Flash 1.5 Full RAG + Full Prompting 89.1% 1.2 4.1% 0.4
GPT-4 Turbo Full RAG + Full Prompting 96.7% - 0.0% -

Notes: This Table reports the accuracy of LLM-generated regulatory classifications against hand-classified data from the Pioneer
Institute. We focus on a leave-out sample of 30 municipalities drawn from the Pioneer Institute, and show accuracy measures
across a range of strategies and LLMs. To quantify accuracy, we calculate the mean and standard deviation across five runs
of each specification. See Appendix Section B for more details on sources of variation across runs. We manually verified
disagreements between our headline specification (GPT-4 Turbo Full RAG + Full Prompting) and the Pioneer dataset, so we
only run this specification once. See Figure 3 for more details on error adjustments. All accuracy statistics are calculated on the
disagreement adjusted testing sample.
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Table 4: National Sample Question Means

Panel A: Continuous Questions
National Income Tercile Urban/Rural

Question Mean Weight Count Low Mid High Rural Mix Urban

How many zoning districts, including overlays, are in the municipality? 14 19 5,471 13 14 14 10 16 13
What is the longest frontage requirement for single family residential devel-
opment in any district?

92 69 5,213 74 83 113 93 97 79

What is the highest residential minimum lot size? (Thousand Square Feet) 52 45 5,424 36 46 70 60 57 31
What is the lowest residential minimum lot size? (Thousand Square Feet) 10 6 5,440 7 9 13 12 10 8
How many mandatory steps are involved in the approval process for a typical
new multi-family building?

4.5 4.3 5,791 4.4 4.4 4.7 4.5 4.5 4.5

For a typical new multi-family building project in this jurisdiction, how many
distinct governing bodies or agencies must give mandatory approval before
construction can begin?

3.1 3.0 5,759 3.2 3.1 3.1 3.1 3.2 3.1

What is the maximum potential waiting time (in days) for government review
of a typical new multi-family building?

218 211 5,109 195 222 233 200 222 226

Panel B: Binary Questions
National Income Tercile Urban/Rural

Question M
ea

n

W
ei
gh

t

C
ou

nt

Lo
w

M
id

H
ig

h

R
ur

al

M
ix

U
rb

an

Is multi-family housing allowed, either by right or special permit (including through overlays or cluster zoning)? 95 99 5,703 99 98 90 95 96 92
Are apartments above commercial (mixed use) allowed in any district? 63 71 5,717 64 67 57 55 66 61
Is multi-family housing listed as allowed through conversion (of either single family homes or non residential build-
ings)?

14 20 5,766 13 14 14 10 15 13

Are attached single family houses (townhouses, 3+ units) listed as an allowed use (by right or special permit)? 80 89 5,795 80 83 80 65 84 83
Does zoning include any provisions for housing that is restricted by age? 45 60 5,129 34 42 57 24 50 52
Are accessory or in-law apartments allowed (by right or special permit) in any district? 33 39 5,781 27 33 37 23 41 22
Is cluster development, planned unit development, open space residential design, or another type of flexible zoning
allowed by right?

9 10 5,797 8 8 10 5 10 8

Is cluster development, planned unit development, open space residential design, or another type of flexible zoning
allowed by special permit?

80 80 5,679 79 81 80 69 86 73

Does the zoning bylaw/ordinance include any mandates or incentives for development of affordable units? 24 50 5,540 10 20 40 9 28 27
Is there a town-wide annual or biannual cap on residential permits issued, and/or is project phasing required? 17 18 5,803 11 17 22 10 19 16
Are there restrictions on counting wetlands, sloped land or easements in lot size calculations? 10 7 4,617 4 8 16 7 12 7
Do developers have to comply with the requirement to include affordable housing, however defined, in their projects? 7 10 5,784 1 4 16 2 7 10
Are there townwide requirements for public hearings on any type of multi-family residential projects? 30 32 5,709 23 30 37 27 30 32

Notes: This table reports the averages of sample questions from our generated national regulatory dataset across a range of demographic associates. We define the count (sample size)
as the number of municipalities where the model does not say “I don’t know” as the answer. The “Weight” column weights each municipality by its population in the 2022 census of
governments. We designate Urban/Rural using the percent overlap of the 2022 shape file for the municipality with the 2020 shape file for urban areas. Specifically, we define Urban as a
municipality being 100% in an urban area, Mix as a municipality being partially in an urban area, and Rural as a municipality being 0% in an urban area. We use median income from
the 2021 Five-Year American Community Survey (B19013_001E). For continuous questions we upper winsorize at the 1% level for frontage, minimum lot sizes, and maximum potential
review waiting time.
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Table 5: Loadings on Principal Components

First Second Third Fourth Fifth

Affordable Incentive 0.42 0.10 -0.37 -0.10 0.04
Affordable Mandate 0.32 0.11 -0.46 -0.17 0.06
Age-Restricted Provisions 0.31 0.00 -0.18 0.15 -0.02
Zoning District Count 0.30 -0.20 -0.00 0.14 -0.07
Wetlands Restricted in Lot Size Calc 0.23 0.20 0.06 0.21 0.11
Permit Cap Or Phasing 0.22 0.03 0.05 -0.22 -0.24
Highest Res Min Lot Size 0.19 0.37 0.22 0.15 -0.02
Longest Frontage Requirement 0.17 0.40 0.21 0.15 0.03
Public Hearing Requirements 0.15 0.11 -0.13 -0.29 -0.09
Max Review Waiting Time 0.12 0.03 0.06 -0.39 0.41
Lowest Res Min Lot Size 0.05 0.47 0.19 0.05 -0.06
Distinct Approval Bodies 0.02 0.02 0.43 -0.31 -0.08
Mandatory Approval Steps 0.01 0.10 0.17 -0.52 0.39
No Conversion to Multifamily -0.09 0.00 -0.19 -0.38 -0.48
No Flexible Zoning By Right -0.13 0.04 -0.23 0.11 0.53
Multifamily Not Allowed -0.14 0.35 -0.08 -0.10 -0.13
No Mixed-Use Buildings -0.21 0.29 -0.20 -0.04 -0.21
Townhouses Not Allowed -0.23 0.33 -0.14 0.04 0.03
Accessory Apartments Banned -0.30 -0.02 -0.06 -0.10 0.06
No Flexible Zoning By Permit -0.31 0.20 -0.31 0.05 0.10

Variance Explained 0.13 0.11 0.06 0.06 0.05
Notes: This table reports loadings between the first five principal components of our regulatory dataset and specific regulatory questions.
We upper winsorize at the 1% level the values for highest residential minimum lot size, lowest residential minimum lot size, longest
frontage requirement, and maxaximum review waiting time. We transform the highest residential min lot size variable into a dummy for
whether it is above one acre. Missing data, where the model output “I don’t know,” were imputed with k-nearest neighbors. Prior to
performing principal component analysis, all variables were normalized into z-scores. Additionally, each variable was expressed in terms of
its expected univariate association with stricter zoning policies, such that more positive values indicate a greater degree of restrictiveness.
For example, the variable representing the allowance of multi-family housing was inverted, so that a more positive value indicates that
multi-family housing is not permitted, while a more negative value suggests that it is not.
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Table 6: Economic and Social Correlates of Housing Regulatory Dimensions

First PC Second PC

No FE Metro FE No FE Metro FE

Fundamental Amenities (County Level)

Combined Amenity Index 0.56*** -0.08***
(0.02) (0.03)

– Natural Amenities Index 0.27*** 0.01
(0.02) (0.02)

– Retail Establishments Index 0.46*** -0.03
(0.02) (0.02)

– Log Patents Per Capita 0.37*** -0.01
(0.02) (0.02)

– Log Employment Density 0.49*** -0.13***
(0.02) (0.03)

Socioeconomic Characteristics (Local Government Level)

Socioeconomic Index 0.22*** 0.10*** 0.35*** 0.24***
(0.01) (0.03) (0.01) (0.03)

– Share Mid to High Income 0.20*** 0.12*** 0.24*** 0.18***
(0.01) (0.03) (0.01) (0.03)

– White Share -0.03*** -0.03 0.22*** 0.22***
(0.01) (0.03) (0.01) (0.03)

– Share Households Over 35 0.06*** -0.07** 0.38*** 0.26***
(0.01) (0.03) (0.01) (0.03)

– Non-Poverty Rate 0.21*** 0.09*** 0.26*** 0.15***
(0.01) (0.02) (0.01) (0.02)

– College Degree Share 0.27*** 0.16*** 0.27*** 0.13***
(0.02) (0.03) (0.01) (0.03)

Government Services (Local Government Level)

Government Services Index 0.24*** 0.12*** 0.36*** 0.16***
(0.02) (0.04) (0.02) (0.03)

– Math Test Scores 0.23*** 0.16*** 0.29*** 0.16***
(0.01) (0.03) (0.01) (0.02)

– Local Revenue Per Student 0.14*** 0.01 0.32*** 0.17***
(0.03) (0.07) (0.06) (0.06)

– Total Revenue Per Capita 0.11*** 0.04 0.08*** -0.04***
(0.02) (0.03) (0.01) (0.01)

Housing Density (Local Government Level)

Housing Density Index 0.05*** 0.04 -0.37*** -0.36***
(0.01) (0.05) (0.02) (0.04)

– Housing Unit Density 0.01 -0.07* -0.17*** -0.24***
(0.01) (0.04) (0.03) (0.06)

– Share Structures with 2 or More Units 0.13*** 0.10*** -0.32*** -0.35***
(0.01) (0.04) (0.01) (0.03)

– Share Rental Units -0.02 0.04 -0.41*** -0.33***
(0.01) (0.04) (0.01) (0.03)

Geographic Attributes (Local Government Level)

Geographic Attributes Index -0.29*** -0.28*** -0.16*** 0.12***
(0.01) (0.03) (0.01) (0.02)

– Log Land Area 0.47*** 0.47*** 0.07*** -0.05
(0.01) (0.03) (0.01) (0.05)

– Log Neighbors within 25 Miles 0.17*** 0.29*** 0.21*** -0.06*
(0.01) (0.06) (0.01) (0.03)

– Log Miles to Metro Center -0.14*** -0.07 -0.03** 0.10***
(0.01) (0.04) (0.01) (0.03)

Political Characteristics (Local Government Level)

Percent Democrat 0.27*** 0.17*** 0.02* -0.22***
(0.01) (0.04) (0.01) (0.04)

Notes: This Table regresses our two key principal components against a variety of county-level covari-
ates (first panel) as well as municipal-level variables (remaining panels). All variables are standardized
(Z-scores). Metro FE columns include state FE for municipalities not within 100 miles of a metro
center. Significance: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors (parentheses) are clustered
at metro/state level when including fixed effects. County regressions use population weights. The
Combined Amenity Index is the first PC of Natural Amenities (climate, topography, water features),
Patents per Capita (2000–2015), and Retail Establishments per capita. Category indices (e.g., Gov-
ernment Services) are first PCs of their components. See Appendix Table A1 for variable definitions
and Figure A7 and Table A8 for detailed components.
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Table 7: Housing Regulation Intensity and Distance from Metropolitan Centers

Independent Variable US Census Region All Regions
West Northeast Midwest South

First Principal Component (Value Capture) -0.10 0.09 -0.23*** -0.16*** -0.07
(0.06) (0.06) (0.08) (0.05) (0.04)

Second Principal Component (Exclusionary Zoning) 0.06 0.22*** 0.06** 0.03 0.10***
(0.08) (0.04) (0.03) (0.04) (0.03)

Accessory Apartments Allowed -0.11* 0.13*** -0.10* -0.07** -0.02
(0.07) (0.04) (0.06) (0.03) (0.03)

Flexible Zoning By Right -0.03 0.06 -0.07 -0.02 -0.01
(0.05) (0.04) (0.05) (0.04) (0.02)

Flexible Zoning By Permit 0.01 0.10* -0.09** -0.03 0.01
(0.04) (0.06) (0.04) (0.04) (0.03)

Affordable Incentive -0.04 0.00 -0.21** -0.17*** -0.07***
(0.07) (0.05) (0.09) (0.04) (0.03)

Affordable Mandate -0.01 -0.01 -0.07 -0.03 -0.01
(0.04) (0.02) (0.06) (0.04) (0.01)

Zoning District Count -0.18** -0.06 -0.24*** -0.22*** -0.17***
(0.07) (0.07) (0.08) (0.05) (0.04)

Permit Cap Or Phasing -0.02 0.03 -0.07*** -0.00 -0.01
(0.03) (0.02) (0.02) (0.02) (0.01)

Wetlands Restricted in Lot Size Calc -0.03 0.14*** -0.03 -0.03 0.04
(0.07) (0.04) (0.05) (0.05) (0.03)

Longest Frontage Requirement 0.03 0.18*** -0.03 -0.03 0.06
(0.06) (0.03) (0.07) (0.04) (0.03)

Highest Res Min Lot Size 0.00 0.19*** 0.01 -0.00 0.06**
(0.05) (0.03) (0.06) (0.04) (0.03)

Lowest Res Min Lot Size 0.04 0.20*** 0.04 -0.02 0.09***
(0.04) (0.03) (0.05) (0.05) (0.04)

Mandatory Approval Steps -0.03 0.02 0.03 0.01 0.01
(0.04) (0.03) (0.03) (0.03) (0.02)

Distinct Approval Bodies 0.02 0.03 0.02 0.02 0.02
(0.04) (0.02) (0.05) (0.03) (0.02)

Public Hearing Requirements 0.00 0.11*** -0.01 -0.05 0.02
(0.03) (0.02) (0.02) (0.03) (0.02)

Max Review Waiting Time -0.09*** 0.05 -0.09** -0.00 -0.03
(0.03) (0.03) (0.04) (0.04) (0.02)

Multifamily Allowed 0.13 -0.04 0.07 0.08** 0.03
(0.10) (0.05) (0.06) (0.04) (0.03)

Mixed-Use Buildings -0.05 -0.03 -0.08*** -0.12*** -0.07***
(0.05) (0.04) (0.03) (0.04) (0.02)

Conversion To Multifamily -0.04 -0.05 0.08*** 0.02 0.00
(0.04) (0.04) (0.02) (0.04) (0.02)

Townhouses Allowed -0.06 -0.10* -0.11*** -0.03 -0.08***
(0.05) (0.06) (0.04) (0.04) (0.02)

Age-Restricted Provisions -0.07 -0.03 -0.13** -0.11** -0.08***
(0.05) (0.05) (0.05) (0.05) (0.03)

Metro Fixed Effects Yes Yes Yes Yes Yes
Notes: This Table shows a regression of distance to city center against a variety of regulatory measures. We subset to within 100 miles of
the center of a metropolitan area which accounts for 3,605 observations in our sample. The dependent variable is log distance to metro
center. A positive coefficient indicates that the variable increases with log distance from the metro center and a negative coefficient
means that the variable decreases with log distance from the metro center. See Appendix Table A9 for full definitions of zoning questions.
Asterisks denote significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are shown in parentheses. We cluster standard
errors at the metro level.
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Table 8: Historical Determinants of Minimum Lot Size Gradients

Panel A: Raw Distance

Regional Slopes (1) (2) (3) (4) (5) (6) (7) (8)

Midwest 85.19*** 79.37*** 28.19 93.13*** 72.31*** 83.45*** 12.90 82.36**
(24.01) (23.05) (21.97) (31.32) (27.86) (24.79) (23.24) (33.02)

Northeast 345.2*** 358.7*** 205.6*** 321.8*** 330.6*** 351.1*** 220.9*** 154.5***
(44.42) (42.69) (44.12) (47.35) (43.67) (45.39) (42.63) (51.48)

South 6.283 2.912 -7.213 -1.022 10.15 19.91 -11.41 2.300
(26.41) (26.14) (27.52) (34.01) (29.14) (30.93) (25.97) (40.64)

West -5.160 -1.264 -10.50 9.998 5.697 0.226 -31.51** 7.588
(10.45) (12.95) (12.07) (13.44) (14.46) (12.82) (14.07) (15.30)

Controls
Nearest Metro ✓ ✓
Density × Nearest Metro ✓ ✓
Foreign Born × Nearest Metro ✓ ✓
Owner-occupied × Nearest Metro ✓ ✓
Manufacturing × Nearest Metro ✓ ✓
Manufacturing × Density ✓ ✓

N 3,353 3,344 3,344 3,344 3,344 3,344 3,344 3,344
R-squared 0.136 0.248 0.329 0.263 0.267 0.266 0.288 0.371

Panel B: Log Distance

Regional Slopes (1) (2) (3) (4) (5) (6) (7) (8)

Midwest 71.49 271.2 -177.1 541.7** 105.7 310.1 -275.2 148.1
(183.3) (183.1) (178.2) (238.1) (220.0) (209.5) (201.4) (285.6)

Northeast 5,087*** 6,033*** 1,936*** 5,316*** 5,763*** 6,406*** 3,087*** 1,291**
(655.3) (631.1) (708.9) (676.6) (658.1) (681.8) (655.4) (641.0)

South -317.8 -251.7 -332.2 -418.8 -298.0 10.49 -380.2 -432.6
(322.7) (313.3) (313.7) (351.7) (327.4) (354.9) (310.2) (362.9)

West 169.0 252.5 214.3 317.3* 380.2* 244.1 -9.487 238.6
(175.0) (193.9) (193.4) (184.7) (218.4) (197.8) (210.2) (220.3)

Controls
Nearest Metro ✓ ✓
Density × Nearest Metro ✓ ✓
Foreign Born × Nearest Metro ✓ ✓
Owner-occupied × Nearest Metro ✓ ✓
Manufacturing × Nearest Metro ✓ ✓
Manufacturing × Density ✓ ✓

N 4,479 4,467 4,467 4,467 4,467 4,467 4,467 4,467
R-squared 0.131 0.244 0.323 0.262 0.263 0.259 0.285 0.362

Notes: This table examines the regional variation in minimum lot size gradients relative to distance from metropolitan centers. The
dependent variable is the lowest residential minimum lot size requirement (in square feet). Panel A presents results using linear distance
measures, and restricts to municipalities within 50 miles of a metro center while Panel B uses a log of distance for municipalities within
100 miles of a metro center. Column (1) shows the baseline regional relationships and subsequent columns adding various controls.
Column (2) additionally controls for a fixed effect for the nearest metropolitan area. Column (3) controls for an interaction of a nearest
metro fixed effect with historical density in the municipality from 1940. Column (4) controls for the foreign-born share, measured in 1940
at the municipality level, interacted with a nearest metro fixed effect. Column (6) controls for manufacturing share of employment in
1940 at the county level interacted with a nearest metro fixed effect. Column (7) controls for manufacturing worker share at the county
level interacted with historical density at the municipal level, with both variables measured in 1940. Column (8) includes all previous
controls. Standard errors are shown in parentheses and are clustered at the municipality level. Asterisks denote significance levels: ∗ p
< 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figures

Figure 1: Model Overview

Notes: This Figure illustrates our overall process for Generative Regulatory Measurement. We download each section within a zoning
ordinance separately. We split up sections that are longer than one thousand tokens into chunks of at most one thousand tokens. We also
combine adjacent sections of less than 50 tokens. So, each section of text varies in length but is between 50 and one thousand tokens.
We vectorize each chunk of text using OpenAI embeddings models (link). Specifically, we use the “text-embedding-3-large” algorithm.
Sometimes digital aggregators leave tables in image form, especially the aggregator Ordinance.com. So that the model can still read the
table, we transcribe images of tables using Amazon Textract. We elicit an open-ended response to each question and then use function
calling to parse out a structured answer (i.e., to ascertain whether an answer is “Yes,” “No,” or “I don’t know” to a binary question).
Question background information and model assumptions are based on a combination of the “Issue Overview” and the “Research Coding”
sections for each question from the Pioneer study as well as from trial and error in the training sample of municipalities. Rephrased zoning
questions came entirely from trial and error on the training sample. Ordinances from digital aggregators (Municode, American Legal
Publishing, and Ordinance.com) are either entirely about zoning, partially about zoning (i.e., have one or more sections about zoning), or
not about zoning at all. We filter out ordinances not at all about zoning by searching for key phrases, table headers, and zoning district
names (i.e., R-1 for the first residential zoning district). See Appendix Section C for further details on question background information
and assumptions as well as system prompts.
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Figure 2: Embeddings of Municipal Code Sections

Panel A: Full Embedding Space

Panel B: Zoomed View of Similar Sections

Notes: This Figure shows the two-dimensional projection of embeddings from sections of municipal codes for Arlington, Massachusets.
Panel A shows the full embedding space, while Panel B provides a zoomed-in view of closely related sections. The embeddings are created
using OpenAI’s text-embedding-3-large model and visualized using UMAP dimensionality reduction.
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Figure 3: Sources of Discrepancy Between LLM and Human Classifications of Zoning Regulations

Notes: This Figure reports reasons for disagreement between our generated model data from GPT-4 Turbo and the original version of
the Pioneer Institute data for binary questions. We first ran GPT-4 Turbo on the testing sample of 30 randomly selected municipalities
that were included in the Pioneer Institute’s study but were not used to train our model. We then identified the binary questions where
the model responses disagreed with the Pioneer study. A law student reviewed each of these disagreements individually to determine the
reason for the discrepancy, classifying them into the categories shown in the chart. When measuring the performance of the model we
adjust for disagreements where the Pioneer study was outdated/incorrect and also drop ambiguous cases.
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Figure 4: Pairwise Correlations Between Zoning Questions

Notes: This heatmap illustrates the pairwise correlations between various zoning regulations across U.S. municipalities. Each cell
represents the correlation coefficient between two zoning measures, with color intensity indicating the strength and direction of the
relationship. Darker red indicates stronger positive correlations, while darker blue represents stronger negative correlations. White or
light-colored cells suggest weak or no correlation. See Appendix Table A9 for full question names. See Table 4 footnote for details on
sample construction.
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Figure 5: Regulatory Dimensions and Housing Market Dynamics

Panel A: First Principal Component (Value Capture)

Panel B: Second Principal Component (Exclusionary Zoning)

Notes: This Figure illustrates the relationship between two principal components of housing regulation and key housing market outcomes.
Panel A shows the first principal component, associated with value capture. Panel B displays the second principal component, which
corresponds to exclusionary zoning practices. The x-axis in both panels represents the percentile of median housing value, drawn from
the 2022 ACS, while the y-axis measures the percentile of units permitted per capita (averaged from 2019–2023). Darker colors illustrate
a larger correlation in the heatmap between each regulatory principal component and each coordinate of prices and building. The right
figures show the overall correlation between each quadrant of the space of housing prices and quantities and the regulatory outcome. See
Table A1 for details on variable definitions.

61



Figure 6: Nationwide Maps of Population-Weighted Averages

Panel A: First PC Panel B: Second PC

Panel C: Affordable Incentives/Mandates Panel D: Lowest Residential Minimum Lot Size

Notes: This Figure plots regulatory variables by state, weighted by local municipality population. We use the 2022 ACS Population as
the population weight. Hawaii is grey because only one municipality (Honolulu) is in the dataset. For county level maps see Appendix
Figure A6.
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Figure 7: Minimum Lot Size Distribution

Panel A: Lowest Residential Minimum Lot Size

Panel B: Highest Residential Minimum Lot Size

Notes: This histogram shows the distribution of minimum lot size requirements across local governments. The x-axis represents lot size in
square feet, with key thresholds labeled. The y-axis shows the percentage of local governments falling into each lot size category. Vertical
lines mark important thresholds: 5,000 sq ft (common suburban lot size), 10,000 sq ft (quarter-acre), and 21,780 sq ft (half-acre). We
measure minimum lot sizes across all residential districts, and show the lowest such requirement within a municipality in Panel A, and
the highest such requirement in Panel B. The x-axis in Panel B stops at 100 thousand square feet, though 12% of local governments have
highest residential minimum lot sizes above this level.
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Figure 8: Second Principal Component and Housing Affordability

Panel A: Share Units Affordable Panel B: Median Home Value

Panel C: Difference in Probability For Left Tail
of Home Value

Panel D: Owner-Occupied Share and Low-
Income Family Share by Second PC

Notes: This paper highlights the associations of the second principal component against different measures of housing affordability. Panel
A splits the sample into the top and bottom 25th percentile on the second PC, ad plots the distribution of affordable housing units in each
sample. Rental units are considered affordable if monthly rent does not exceed 30% of the monthly median income; owner-occupied units
are affordable if their value is less than three times the annual median income. Panel B shows the distribution of median house values
across municipalities across the top and bottom 25th percentiles. In Panel C, we compare the distribution of home values between local
governments with high and low second principal component (PC) scores for owner occupied units from the 2022 American Community
Survey (ACS). We focus on local governments with median home values between $200k and $500k, where the most overlap occurs in
the second PC median home value histogram (Panel B). For each ACS home value range:$200k-–$249k, $250k-–$299k, $300k—$399k,
and $400k—$499k—we filter the dataset to include only local governments with median home values in that range. Within each filtered
subset, we divide local governments into the top and bottom 25th percentiles of the second PC. We then calculate the percentage point
difference in the probability mass of housing units for each ACS home value bin for high and low second PC local governments. To
simplify the analysis, we collapse all home values below $100k into a single category with a midpoint of $50k. The x-axis measures the
percentage difference between the bucket’s median home value midpoint (e.g., $225k for the $200k—$249k bucket) and the midpoint of
each ACS home value bin, while the y-axis represents the difference in probability mass between high and low second PC municipalities.
Finally, a kernel regression, with bandwidth determined using Silverman’s rule of thumb, is fitted to the plotted points to highlight the
underlying trend. Panel D shows the relationship between different levels of the second PC and the municipal owner-occupied share
(correlation of 0.41) as well as the share of families that are low-income (income below 80% of the state median income, correlation of
-0.24).

64



Figure 9: Spatial Variation of Zoning Regulations Relative to Metropolitan Centers

Notes: Note: We plot regulatory variables at the local government level based on the distance from the center of the respective metro,
defined as city hall. We show whether a city has an affordable housing incentive or mandate; the minimum lot size; the first principal
component of housing regulation (value capture), and the second principal component of housing regulations (exclusionary zoning).
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Figure 10: Lowest Residential Minimum Lot Sizes For Select Metro Areas

Panel A: Atlanta Panel B: Chicago

Panel C: Philadelphia Panel D: San Francisco

Notes: This Figure plots the lowest local government wide minimum lot size for each local government in the Atlanta (Panel A), Chicago
(Panel B), Philadelphia (Panel C), and the San Francisco Bay Area (Panel D) metro areas. Within each map we plot all Census-designated
places as well as county subdivisions that represent local governments. Both Census-designated place and Census county subdivisions
data comes from the 2022 Census TIGER/Line shape files. Each map shows roughly a 100km × 100km square area. Non-Incorporated
areas are shown in light grey, and areas for which the model reported “I don’t know” are shown in dark gray.
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Figure 11: Affordable Housing Incentives or Mandates For Select Metro Areas

Panel A: Atlanta Panel B: Chicago

Panel C: Philadelphia Panel D: San Francisco

Notes: This Figure plots the presence of affordable housing incentives for each local government in the Atlanta (Panel A), Chicago
(Panel B), Philadelphia (Panel C), and the San Francisco Bay Area (Panel D) metro areas. Areas with incentives or mandates are
plotted in blue; areas without such mandates are shown in red. Within each map we plot all Census-designated places as well as county
subdivisions that represent local governments. Both Census-designated place and Census county subdivisions data comes from the 2022
Census TIGER/Line shape files. Each map shows roughly a 100km × 100km square area. Non-Incorporated areas are shown in light
grey, and areas for which the model reported “I don’t know” are shown in dark gray.
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Figure 12: Minimum Lot Sizes and Historical Density

Panel A: Deviation from Metro Historical Density and Minimum Lot Size

Panel B: OLS Regression of Min Lot Size against Historical Housing Density

Notes: Panel A of this Figure examines the relationship between historical population density and contemporary minimum lot size
requirements. Each point represents a municipality, with the x-axis showing the deviation of each municipality’s density in 1940 from the
closest metropolitan area’s average historical density (standardized). The y-axis showing minimum lot size requirements in thousands of
square feet. Panel B presents an OLS regression analysis of modern minimum lot size requirements against 1940 housing unit density.
The unit of observation is municipality, and we estimate coefficients at the MSA level. In both figures, different regions are indicated
through colors.

68



A Appendix: Additional Graphs and Tables

Figure A1: Distribution of Ordinance Lengths

Notes: This figure shows a distribution of token counts for municipal zoning ordinances in our sample. Vertical dashed lines represent
maximum context length for various popular Large Language Models in number of tokens. We use the OpenAI tokenizer used in GPT-4
Turbo (cl100k_base), though tokenizers for Claude and Gemini produce similar numbers.
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Figure A2: Splitting Up Ordinance Into Chunks Using Hierarchical Structure: Arlington, MA
Example

Notes: This Figure shows how we split ordinances into chunks of text using the hierarchical structure of the zoning ordinance. We first
split the ordinance into chunks based on the sections and subsections of the document. Then we combine subsections together if they
are less than 50 tokens in length and split them up if they are more than 1000 tokens in length.
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Figure A3: Comparison of Human vs. LLM Cost

Notes: This figure compares the cost of human versus LLM-based analysis of zoning regulations across different numbers of municipalities.
We assume: (1) Lawyers take an average of five minutes per question-municipality pair, compensated at $50/hour; (2) For the RAG
approach, each LLM API call involves 4,000 input tokens and 500 output tokens, with costs of $5 and $15 per million tokens respectively;
(3) Question preparation costs $390/question, including lawyer time for answering 60 municipalities (30 for training, 30 for testing) and
10 hours of human labor at $140 to train the model; (4) Scraping, cleaning, and embedding each municipality’s ordinance costs $2.80.
For the No-RAG approach, input tokens average 330,000 per question-municipality pair based on mean ordinance length. All costs are
assumed to scale linearly with the number of municipalities and questions, shown here for 20 questions.

71



Figure A4: Measuring Housing Process Variation

Notes:. This Figure plots population weighted averages of four LLM-generated process regulations at the census region level.
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Figure A5: Relationship between First and Second Principal Components

Notes: This scatter plot illustrates the relationship between the first two principal components of our zoning regulation analysis across U.S.
municipalities. The x-axis represents the first principal component (PC1), which we interpret as a measure of value capture. The y-axis
shows the second principal component (PC2), which corresponds to exclusionary zoning practices. Each point represents a municipality.
Municipalities in the upper right quadrant tend to have both value capture and more exclusionary practices, while those in the lower left
capture less value and exclude less.
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Figure A6: County Maps of Zoning Measures

Panel A: Average First PC Panel B: Population Weighted

Panel C: Average Second PC Panel D: Population Weighted

Panel E: Affordable Incentives/Mandates Panel F: Population Weighted

Panel G: Lowest Min Lot Size Panel H: Population Weighted

Notes: This Figure shows county-level maps of four key zoning measures across the United States. Panels A–B show the first principal
component (PC1) of zoning regulations, interpreted as value capture. Panels C–D display the second principal component (PC2),
associated with exclusionary zoning practices. Panels E–F illustrate the prevalence of affordable housing incentives or mandates. Panels
G–H depict the minimum residential lot size requirements. For each measure, we present both unweighted averages (left column) and
population-weighted averages (right column). Darker colors indicate higher values or greater prevalence of each measure. We use the
2022 ACS Population as the population weight. Hawaii is grey because only one municipality (Honolulu) is in the dataset. For population
weighted state maps see Figure 6.
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Figure A7: Granular County Amenities Correlations with Principal Components

Notes: This Figure shows the correlation of the first principal component of regulatory variables against a range of amenities. Retail
establishment data are taken from the U.S. Census Bureau’s County Business Patterns (CBP) 2022 dataset. Correlations are calculated
at the county level, with the number of establishments for each industry normalized to per capita measures using county population
estimates. Principal Component indices are population-weighted averages of municipality level data, aggregated to the county level.
Industries are classified using 2017 NAICS codes. Natural amenity data comes from USDA county natural amenities dataset.

75



Figure A8: Spatial Autocorrelation of Zoning Regulations and Indices

Notes: This figure displays Moran’s I spatial autocorrelation statistics for various zoning regulations and indices. Moran’s I measures the
degree to which similar values cluster spatially, with values closer to 1 indicating stronger positive spatial autocorrelation.
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Figure A9: Correlations Between Second Principal Component and Housing Outcomes

Panel A: Low-Income Housing and Ownership Panel B: Housing and Ownership Among
Younger Households

Panel C: Correlation of Second PC with Home Value Dispersion

Notes: This Figure shows the relationship between the second principal component and other key housing indicators. Panel A plots
the relationship between the second PC and the share of low-income families, the share of low-income homeowners, and the low-income
owner-occupancy rate. Panel B examines similar trends for younger households, plotting the share of family owners under 35, the owner-
occupancy rate among those under 35, and the overall share of families under 35. Panel C presents correlations between the second PC
and measures of home value dispersion across different median home value bins. The correlation with the 25th percentile home value
reflects the absolute percent difference from the median, so a negative correlation indicates that higher-second PC municipalities have a
tighter lower tail, with the 25th percentile closer to the median. Similarly, a negative correlation with the 75th percentile means that
the upper tail is also compressed. The interquartile range correlation captures the combined effect of these shifts, with negative values
indicating an overall tighter home value distribution in higher-second PC municipalities.
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Figure A10: Second PC and Rent by Number of Bedrooms

Notes: This Figure plots the correlation between various rent measures and the second principal component of our housing regulatory
dataset both with raw values (blue) and demeaned at the MSA level. Rent measures come from the 2022 ACS. “Overall” is the median
gross rent value (B25064_001E), while other categories are median gross rents conditioned on number of bedrooms in the housing unit
(i.e. B25031_003E for median gross rent for one-bedroom apartments).
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Figure A11: Minimum Lot Sizes and Historical Variation

Panel A: Binscatter of Min Lot Size Against Distance

Panel B: Manufacturing Workforce Share

Notes: Panel A presents a binscatter plot showing how minimum lot size requirements (y-axis, in thousand square feet) vary with
distance from metropolitan centers (x-axis, in miles shown on a log scale) across different U.S. regions. Panel B maps the historical
manufacturing workforce share across U.S. counties. Both plots break out different regions.
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Figure A12: Correlation Between 1940 and 2019 Log Housing Unity Density

Notes: This Figure plots the correlation between log housing density within municipality between 1940 and 2019. We use 1940 and 2019
housing units per square mile for all 2010 census tracts from Markley et al. (2022).
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Table A1: Description of Variables Used in the Study

Variable Source Definition

Auto Commute Share 2022 ACS Percentage of commuters using either cars, trucks, or vans as

their primary commute method.

Born in Same State Share 2022 ACS Ratio of those born in the state (B05002_003E) to those all

those with information on location of birth (B05002_001E).

College Degree Share 2022 ACS The percentage of the population aged 25 and over with

a bachelor’s degree or higher (B15003_022E, B15003_023E,

B15003_024E, B15003_025E / B15003_001E).

Foreign Born Share 2022 ACS The percentage of the population that is foreign-born

(B05002_013E / B05002_001E).

Housing Unit Density 2022 ACS The number of housing units in a local government divided by

the area from its shape file.

Median Gross Rent 2022 ACS The median gross rent for rental units (B25064_001E).

Median Home Value 2022 ACS The median value of owner-occupied housing units

(B25077_001E).

Non-Poverty Rate 2022 ACS Theratio of the population with income in past 12 months below

poverty line (B17001_002E) over the population with poverty

status (B17001_001E). We subtract this ratio from 100% to get

the non-poverty rate.

Owner-Occupied Share 2022 ACS The percentage of housing units that are owner-occupied

(B25003_002E / B25003_001E).

Share Families Low Income 2022 ACS Share of families with income below 80% of the state median in-

come. The distribution of incomes in a local government comes

from ACS income buckets by tenure (i.e. B25118_003E for num-

ber of owner-occupied households making below $5,000).

Share Households Over 35 2022 ACS We sum the number of rental and owner occupied units with a

households under the age 35 (i.e. B25007_003E) and divide by

the total number of units with age of householder information

(B25007_001E). We subtract this ratio from 100% to get the

share of households over 35.

Continued on next page
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Table A1 continued from previous page

Variable Source Definition

Share Mid to High Income 2022 ACS Share of families that are not low income, see "Share Families

Low Income" definition.

Share Population 65 and Over 2022 ACS The percentage of the population aged 65 and over

(B01001_020E to B01001_025E and B01001_044E to

B01001_049E / B01001_001E).

Share Population Under 18 2022 ACS The percentage of the population under 18 years old

(B01001_003E to B01001_006E and B01001_027E to

B01001_030E / B01001_001E).

Share Rental Units 2022 ACS 100% minus the owner-occupied share, see owner occupied share

definition.

Share Structures Built Before

1970

2022 ACS The percentage of housing structures built before 1970

(B25034_008E, B25034_009E, B25034_010E, B25034_011E /

B25034_001E).

Share Structures with 2 or More

Units

2022 ACS The percentage of housing structures with 2 or more units

(B25024_004E to B25024_009E / B25024_001E).

Share Units Affordable 2022 ACS The percentage of housing units affordable to households earning

the state median income. This measure combines rental and

owner-occupied housing affordability, determined using the state

median income. Rental units are affordable if the monthly rent

does not exceed 30% of the monthly median household income,

and owner-occupied units are affordable if their value is less than

three times the annual median household income. The total

number of affordable rental and owner-occupied units is summed

and divided by the total number of housing units to determine

the share of units that are affordable.

Share with Commute Over 30

Minutes

2022 ACS The percentage of workers with a commute time over 30 minutes

(B08303_008E to B08303_013E / B08303_001E).

Vacancy Rate 2022 ACS The percentage of vacant housing units (B25002_003E /

B25002_001E).

White Share 2022 ACS The percentage of the population identifying as White

(B02001_002E / B02001_001E).

Continued on next page
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Table A1 continued from previous page

Variable Source Definition

Local Revenue Per Student 2022 Annual Survey

of School System Fi-

nances

The local revenue for a school district divided by the enrollment

of that school district. We spatially merge school districts into

the Census of Gov- ernments. Local revenue for school districts

includes property taxes directly raised by the school and trans-

fers from local governments for subordinate school districts.

Log Land Area 2022 Census Shapefiles The area in acres of a local government with a log transform.

Miles to Metro Center 2022 Census Shapefiles The number of miles from the centroid of a local government’s

shape file to the center of a metropolitan area.

Log Neighbors within 25 Miles 2022 Census of Govern-

ments

The number of other local governments within 25 miles of a local

government’s border.

Units Permitted Per Capita BPS The number of housing units permitted per capita averaged over

2019-2023.

Log Employment Density CBP Log of total employment at the county level normalized by

county land area from the Census Gazetteer files.

1940 Foreign Born Share NHGIS Ratio of foreign born males (BXY003) and females (BXY004) to

both native and foreign born population.

1940 Manufacturing Workforce

Share

NHGIS Ratio of the number of annual average wage earner in manufac-

turing (BW001) to the sum of employed males (BW9001) and

females. (BW9002)

1940 Owner Occupied Share NHGIS Ratio of owner occupied dwellings (BYM001) to the sum

of owner occupied dwellings and tenant occupied dwellings

(BYM002).

Log Patents Per Capita USPTO Domestic patents granted between 2000–2015, normalized by

each county’s average population during that period.

Percent Democrat (Bryan, 2022) The share of votes that are Democrat in 2020.

Year of Incorporation (Goodman, 2023) The year a municipality was incorporated. Not available for

townships.

Property Tax Rate (Pierson et al., 2015) The property tax rate is calculated as the total property tax

revenue (Property_Tax_2017) divided by the aggregate home

value from the 2017 ACS. This excludes property taxes raised

from independent school districts.

Continued on next page
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Table A1 continued from previous page

Variable Source Definition

Total Revenue Per Capita (Pierson et al., 2015) Total local government revenue (Total_Revenue) normalized by

population.

Math Learning Rate (Reardon et al., 2024) The slope of the increase in math test scores from 3rd to 8th

grade pooled across years (2008-2019) (cs_mn_grd_mth_ol).

Math Test Scores (Reardon et al., 2024) The average math test score pooled across grades (3rd-8th) and

years (2008-2019) (cs_mn_avg_mth_ol).

Natural Amenities Index (Service, 2019) Calculated by USDA as the first principal component of various

climate, topography, and water area features.

Opportunity Index (Chetty et al., 2025) The kid family rank, a measure of economic mobility. This data

is merged from census tracts to local governments using Geocorr.

1940 Housing Unit Density (Markley et al., 2022) Estimated 1940 housing units per square mile in 2010 tract bor-

ders merged to local governments with geocorr.

Notes: USPTO is the United States Patent and Trademark Office. NHGIS is the National Historical Geographic Information System.

CBP is the County Business Patterns dataset. BPS is the Building Permits Survey dataset. 2022 ACS refers to the 2022 American

Community Survey dataset.

84



Table A2: Question Level Accuracy Contributions From Prompting

Panel A: Binary Questions
Accuracy (%)

Question No Prompting Prompt Background Prompt
Engineering Info Chaining

Accessory Apartments Allowed 86.1% 99.0% 96.7% 96.7%
(3.9) (2.1) (0.0) (-)

Flexible Zoning By Right 100.0% 100.0% 100.0% 100.0%
(0.0) (0.0) (0.0) (-)

Flexible Zoning By Permit 96.0% 94.8% 95.8% 100.0%
(0.3) (3.4) (2.9) (-)

Affordable Incentive 81.4% 86.6% 99.3% 100.0%
(2.5) (1.9) (1.5) (-)

Permit Cap Or Phasing 83.3% 67.1% 91.3% 90.0%
(0.0) (5.2) (1.8) (-)

Wetlands Restricted in Lot Size Calc 76.0% 90.6% 92.7% 96.7%
(1.5) (5.6) (1.5) (-)

Multifamily Allowed 93.0% 94.7% 95.3% 100.0%
(2.3) (1.8) (3.0) (-)

Mixed-Use Buildings 79.7% 91.4% 92.6% 96.7%
(7.5) (2.9) (1.5) (-)

Conversion To Multifamily 59.5% 60.8% 88.0% 96.7%
(1.3) (4.1) (3.8) (-)

Townhouses Allowed 73.6% 68.1% 82.6% 90.0%
(6.2) (1.5) (2.8) (-)

Age-Restricted Provisions 89.5% 93.4% 98.6% 96.7%
(5.1) (2.9) (1.9) (-)

Panel B: Continuous Questions
Correlation

Question No Prompting Prompt Background Prompt
Engineering Info Chaining

Zoning District Count 0.88 0.95 0.94 0.98
(0.03) (0.03) (0.02) (-)

Longest Frontage Requirement 0.50 0.53 0.46 0.70
(0.10) (0.12) (0.07) (-)

Lowest Res Min Lot Size 0.80 0.87 0.79 0.92
(0.11) (0.04) (0.29) (-)

Notes: This Table shows how different prompting strategies affect accuracy for specific zoning questions. Accuracy is measured on a
validation sample of 30 municipalities from the Pioneer Institute which were not used during prompt development. Performance metrics
are reported for binary questions (percent accurate, Panel A) and continuous ones (correlation, Panel B). Standard errors calculated
across five model runs are shown in parentheses. Each row corresponds to a different question, and each column associates with a different
LLM prompting strategy.
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Table A3: Confusion Matrix For Binary Performance Results

True Positive False Positive True Negative False Negative True Positive Rate False Positive Rate Precision
Question

Multifamily Allowed 28 0 2 0 1.00 0.00 1.00
Mixed-Use Buildings 15 0 14 1 0.94 0.00 1.00
Conversion to Multifamily 12 1 17 0 1.00 0.06 0.92
Townhouses Allowed 18 1 9 2 0.90 0.10 0.95
Age-Restricted Provisions 22 0 7 1 0.96 0.00 1.00
Accessory Apartments Allowed 18 0 11 1 0.95 0.00 1.00
Flexible Zoning by Right 1 1 27 0 1.00 0.04 0.50
Flexible Zoning by Permit 26 0 3 0 1.00 0.00 1.00
Affordable Housing 22 0 7 0 1.00 0.00 1.00
Permit Cap or Phasing 8 2 19 1 0.89 0.10 0.80
Wetlands Restricted in Lot-Size Calc 23 1 6 0 1.00 0.14 0.96
Total 193 6 122 6 0.97 0.05 0.97

Notes: This Table shows a confusion matrix of model accuracy for binary variables. True Positive refers to an outcome where the
model correctly predicts the positive class. False Positive is an outcome where the model incorrectly predicts the positive class. True
Negative denotes an outcome where the model correctly predicts the negative class. False Negative represents an outcome where the
model incorrectly predicts the negative class. The true positive rate (also known as sensitivity or recall) is the proportion of actual
positive cases correctly identified by the model. The false positive rate (also known as the false alarm rate or fall-out) is the proportion of
actual negative cases incorrectly identified as positive by the model. Precision (also known as positive predictive value) is the proportion
of positive identifications that are actually correct. See Panel B footnote of Table 2 for details about the sample.
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Table A4: Further Manual Validation

Panel A: Process Questions on Nationwide Random Sample of 30 Municipalities

Question Description Correct Ambiguous Incorrect Correct (Non-Ambiguous %)

Public Hearing Requirements 80% 10% 10% 89%
Max Review Waiting Time 87% 13% 0% 100%
Mandatory Approval Steps 93% 7% 0% 100%
Distinct Approval Bodies 80% 13% 7% 92%

Panel B: Bulk Questions on Random Sample of 30 California Municipalities

Question Description Correct Ambiguous Incorrect Correct (Non-Ambiguous %)

Lowest of Residential Min Lot Sizes 83% 6% 10% 89%
Longest Frontage Requirement 80% 10% 10% 89%

In Panel A we randomly drew 30 municipalities from our national dataset and had a law student review
each answer. For Panel B, we drew a random sample of 30 municipalities from California and had a law
student review each answer. Answers that are ambiguous include situations where the bulk regulations
depend on whether a lot is interior or corner and the model chose one of the cases that could be correct.
The column “Correct (Non-Ambiguous %)” calculates the percentage of correct responses among
non-ambiguous cases. See Table A9 for full detailed versions of questions.
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Table A5: Housing Regulation and Housing Supply Elasticity

Dependent Variable: First Principal Component Second Principal Component

New Housing Unit Elasticity -0.43*** -0.17** -0.74*** -0.10
(0.05) (0.09) (0.05) (0.10)

Share Land Developed (2001) -0.87*** -0.28 -2.23*** -0.90***
(0.11) (0.23) (0.12) (0.23)

Squared Share Land Developed (2001) 0.38*** -0.05 1.26*** 0.41***
(0.08) (0.15) (0.08) (0.15)

Share Land Flat Plains 0.01 0.03 0.19*** 0.12*
(0.03) (0.05) (0.03) (0.07)

Log Miles to Metro Center -0.10*** -0.08*** -0.15*** -0.09***
(0.02) (0.03) (0.02) (0.03)

Intercept 0.14*** -0.49*** 0.06*** 1.45***
(0.02) (0.07) (0.02) (0.06)

R-squared 0.06 0.20 0.17 0.40
N 3890 3890 3890 3890
Metro Fixed Effects No Yes No Yes

Notes: This specification has as the dependent variable the first regulatory principal component (value capture, first two columns) and
the second regulatory principal component (exclusionary zoning, second two columns). We regress these variables against a range of
variables relating to new housing production and land availability. All variables are normalized to z-scores for the regression. Housing
elasticity controls follow Baum-Snow and Han (2024) and include fraction of land developed in 2001, squared fraction of land developed in
2001, and the fraction of land with a flat topography. Metro fixed effects include state fixed effects for municipalities not within 100 miles
of a metro center. Asterisks denote significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are shown in parentheses.
Standard errors are clustered at the metro level when using metro fixed effects and are robust otherwise.
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Table A6: Predicting Housing Market Outcomes With Zoning Regulation

Panel A: Individual Housing Regulations
Dependent Variable: Median Home Value Total Building Permits Median Gross Rent Housing Unit Density Share Housing Units Affordable
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Lowest Res Min Lot Size 50 0.02 0.12*** 32 0.01 66 0.03 0.08*** 100 -0.13 -0.24*** 100 -0.11 -0.17***
Multifamily Not Allowed 99 0.17 0.24*** 18 0.00 100 0.14 0.16*** 49 -0.04 -0.10*** 73 -0.08 -0.12***
Affordable Mandate 62 0.01 0.05*** 100 -0.00 79 0.06 0.09*** 58 -0.01 -0.02 35 -0.01 -0.05***
Highest Res Min Lot Size 51 0.01 0.09*** 11 0.02 49 0.02 0.07*** 96 -0.11 -0.21*** 74 -0.06 -0.15***
Affordable Incentive 62 0.01 35 0.02 61 0.03 0.08*** 59 -0.02 48 -0.03 -0.07***
Townhouses Not Allowed 100 0.02 0.12*** 9 -0.03** 56 -0.02 -0.01 28 -0.04 -0.07*** 48 0.01
Longest Frontage Requirement 47 0.06*** 37 0.01 52 0.01 0.06*** 50 -0.12 -0.21*** 43 -0.04 -0.12***
No Conversion to Multifamily 49 0.02* 23 0.02 64 0.02 36 -0.03 -0.06*** 48 -0.03***
Age-Restricted Provisions 67 -0.07*** 18 0.01 58 0.00 0.02 28 -0.00 0.00 48 -0.02*
Zoning District Count 56 -0.04*** 16 0.00 0.06*** 58 0.06 0.06*** 40 0.03 0.03*** 48 -0.04 -0.06***
Max Review Waiting Time 30 -0.00 47 0.02 42 0.01 48 -0.01 -0.02 42 -0.02*
No Mixed-Use Buildings 59 0.07*** 29 -0.02 45 0.03 0.04*** 33 -0.06 -0.09*** 41 -0.02*
Public Hearing Requirements 57 -0.04*** 12 0.04** 56 -0.00 -0.01 24 0.00 0.00 45 0.01
Wetlands Restricted in Lot Size Calc 32 0.04*** 17 0.01 44 0.02 0.04*** 33 -0.06 -0.11*** 53 -0.05 -0.10***
Mandatory Approval Steps 43 0.03** 19 0.03* 44 0.01 0.03** 29 -0.01 41 -0.00 -0.04***
Flexible Zoning By Permit 33 0.08*** 12 -0.05*** 37 -0.01 49 0.09 0.08*** 44 0.03 0.07***
Permit Cap Or Phasing 19 -0.04*** 26 0.03** 37 0.01 33 -0.03 -0.05*** 49 -0.04***
Distinct Approval Bodies 37 0.02 17 0.01 29 0.01 0.03** 36 -0.01 -0.04*** 43 -0.02
Accessory Apartments Banned 22 -0.03*** 21 -0.05*** 31 -0.02 -0.05*** 27 0.06 0.08*** 23 0.08 0.12***
No Flexible Zoning By RIght 15 -0.00 13 0.00 35 -0.01 19 0.01 0.04*** 38 0.02 0.06***

Panel B: Housing Regulations Indices
Dependent Variable: Median Home Value Total Building Permits Median Gross Rent Housing Unit Density Share Housing Units Affordable
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Overall Index 82 -0.05 -0.01 73 0.02 0.03** 91 -0.06 0.00 100 0.01 91 0.08 0.00
First PC 91 0.02 92 -0.02 96 -0.02 0.00 80 0.02 91 0.02 -0.00
Second PC 100 0.05 0.01 100 0.02 100 0.07 0.03* 76 0.01 100 -0.10 -0.03**

Notes: This specification reports the results of three sets of regressions: a random forest specification, LASSO, and bivariate regressions of
our generated regulatory variables against four dependent variables. Median house value and median gross rent are drawn from the 2022
ACS. Total building permits are defined as the number of housing units permitted divided by the population of the local government,
averaged over 2019–2023, from the Census Building Permits Survey. Housing unit density is the number of housing units in a local
government in the 2022 ACS divided by the area from its shape file. The share of affordable housing units is defined as the percentage
of housing units affordable to someone earning the state median income. Rental units are considered affordable if the monthly rent does
not exceed 30% of the monthly median household income, and owner-occupied units are affordable if their value is less than three times
the annual median household income. For bivariate regressions, stars indicate statistical significance: *** p<0.01, ** p<0.05, * p<0.1.
LASSO coefficients are shown where selected, with blank cells indicating variables not retained in the model. XGBoost scores represent
“gain” importance from a random forests specification, measuring the average gain of splits using each feature, normalized so the most
important feature for each dependent variable has a score of 100, with others scaled relatively. Higher scores indicate greater importance
in the model’s predictions. All variables are first demeaned at the metro level, or for municipalities not within 100 miles of a metro center
at the state level, then transformed into z-scores (mean=0, std=1). We use imputed regulations from our PCA analysis for LASSO and
Bivariate regressions when the LLM reports “I don’t know,” see footnote of Table 5 for further details. We express variables so that
a more positive value is associated with stricter zoning regulations, i.e. we transform the question of whether multi-family housing is
allowed to whether it is not allowed. We allow missing data for XGBoost letting the algorithm both impute and predict. The Overall
index in Panel B is a sum of normalized individual housing regulations for a municipality.
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Table A7: Comparative Model Performance in Predicting Housing Outcomes

(1) (2) (3) (4) (5) (6) (7)

LHS Variable Model

Median
Home Value

Lasso 1.07 1.11 0.73 1.05 0.71 0.73 0.71
OLS 1.06 1.11 0.72 1.05 0.70 0.72 0.70
XGBoost 1.00 1.12 0.74 0.96 0.66 0.77 0.67

Total Building
Permits

Lasso 1.07 1.07 1.06 1.07 1.07 1.07 1.07
OLS 1.06 1.06 1.06 1.06 1.06 1.06 1.06
XGBoost 1.32 1.31 1.31 1.32 1.31 1.31 1.31

Median
Gross Rent

Lasso 1.08 1.10 0.82 1.07 0.81 0.82 0.81
OLS 1.08 1.10 0.81 1.07 0.81 0.81 0.81
XGBoost 1.06 1.08 0.80 1.04 0.76 0.80 0.77

Housing
Unit Density

Lasso 1.08 1.16 1.13 1.08 1.07 1.13 1.07
OLS 1.08 1.16 1.13 1.08 1.07 1.13 1.07
XGBoost 0.98 1.13 1.10 0.98 0.98 1.08 0.98

Share Housing
Units Affordable

Lasso 0.99 1.02 0.70 0.97 0.69 0.70 0.69
OLS 0.99 1.02 0.69 0.97 0.68 0.69 0.68
XGBoost 0.99 1.03 0.63 0.95 0.53 0.62 0.52

Variables
Included

Regulations Yes No No Yes Yes No Yes
Land No Yes No Yes No Yes Yes
Income No No Yes No Yes Yes Yes

Notes: These specification report the RMSE of models predicting the housing market outcomes in Table A6. We include housing regulation measures in columns 1, 4, 5, and 7. We also
include land availability controls (the share of land that is flat plains) in columns 2, 4, 6, and 7. We include median household income from the 2022 ACS as a control in specifications
3, 5, 6, and 7. All variables are first demeaned at the metro level, or when not available at the state level, then transformed into z-scores (mean=0, std=1). We use imputed regulations
when the LLM reports “I don’t know” to avoid different imputation values across different controls, see footnote of Table 5 for further details.
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Table A8: Other Associates of Principal Components

First PC Second PC

No FE Metro FE No FE Metro FE

Year of Incorporation 0.01 -0.06*** 0.10*** 0.13***
(0.01) (0.02) (0.01) (0.02)

Property Tax Rate 0.06*** -0.03 0.07*** -0.12***
(0.01) (0.02) (0.02) (0.02)

Vacancy Rate -0.15*** -0.15*** 0.04*** 0.06***
(0.01) (0.03) (0.01) (0.02)

Share with Commute Over 30 Minutes 0.13*** -0.04 0.24*** 0.12***
(0.01) (0.03) (0.01) (0.03)

Auto Commute Share -0.18*** -0.05 -0.16*** -0.03
(0.02) (0.05) (0.01) (0.03)

Share Population Under 18 -0.07*** 0.00 -0.11*** -0.02
(0.01) (0.02) (0.01) (0.02)

Share Population 65 and Over -0.07*** -0.10*** 0.16*** 0.14***
(0.01) (0.02) (0.01) (0.02)

Median Home Value 0.18*** -0.04 0.28*** 0.27***
(0.02) (0.07) (0.02) (0.03)

Median Gross Rent 0.29*** 0.13*** 0.22*** 0.15***
(0.02) (0.05) (0.01) (0.03)

Foreign Born Share 0.16*** 0.07* -0.04*** -0.17***
(0.02) (0.04) (0.01) (0.03)

Units Permitted Per Capita 0.09*** 0.06*** -0.03* 0.00
(0.02) (0.02) (0.01) (0.01)

Share Structures Built Before 1970 -0.19*** -0.28*** 0.06*** -0.09***
(0.01) (0.04) (0.01) (0.03)

Math Learning Rate 0.10*** 0.08*** 0.11*** 0.08***
(0.01) (0.02) (0.01) (0.02)

Share Units Affordable -0.32*** -0.16*** -0.29*** -0.20***
(0.01) (0.03) (0.01) (0.04)

Born in Same State Share -0.19*** -0.17*** 0.04*** 0.05*
(0.01) (0.03) (0.01) (0.03)

Opportunity Index 0.08*** 0.00 0.24*** 0.16***
(0.01) (0.03) (0.01) (0.03)

Notes: This Table reports a regression of our two principal components against additional covariates. For
variable definitions, see Appendix Table A1. All right-hand side variables are measured as Z-scores. Fixed
effects are for metros with State FE for municipalities not within 100 miles of a metro center. Asterisks denote
significance levels: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are shown in parentheses. We cluster
standard errors at the metro/state level when including metro fixed effects and use robust standard errors
otherwise. County level regressions use population weighted regulations. Results for other covariates can be
found in Table 6.
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Table A9: Mapping of Full Pioneer Institute Study Questions to Short Names

Full Question Short Question

Is multi-family housing allowed, either by right or special permit (including through overlays or cluster
zoning)?

Multifamily Allowed

Are apartments above commercial (mixed use) allowed in any district? Mixed-Use Buildings
Is multi-family housing listed as allowed through conversion (of either single family homes or non resi-
dential buildings)?

Conversion To Multifamily

Are attached single family houses (townhouses, 3+ units) listed as an allowed use (by right or special
permit)?

Townhouses Allowed

Does zoning include any provisions for housing that is restricted by age? Age-Restricted Provisions
Are accessory or in-law apartments allowed (by right or special permit) in any district? Accessory Apartments Allowed
Is cluster development, planned unit development, open space residential design, or another type of
flexible zoning allowed by right?

Flexible Zoning By Right

Is cluster development, planned unit development, open space residential design, or another type of
flexible zoning allowed by special permit?

Flexible Zoning By Permit

Does the zoning bylaw/ordinance include any mandates or incentives for development of affordable units? Affordable Incentive
Is there a town-wide annual or biannual cap on residential permits issued, and/or is project phasing
required?

Permit Cap Or Phasing

Are there restrictions on counting wetlands, sloped land or easements in lot size calculations? Wetlands Restricted in Lot Size Calc
What is the lowest residential minimum lot size? Lowest Res Min Lot Size
What is the mean residential minimum lot size? Mean Res Min Lot Size
What is the highest residential minimum lot size? Highest Res Min Lot Size
How many zoning districts, including overlays, are in the municipality? Zoning District Count
What is the longest frontage requirement for single family residential development in any district? Longest Frontage Requirement
Do developers have to comply with the requirement to include affordable housing, however defined, in
their projects?

Affordable Mandate

How many mandatory steps are involved in the approval process for a typical new multi-family building? Mandatory Approval Steps
For a typical new multi-family building project in this jurisdiction, how many distinct governing bodies
or agencies must give mandatory approval before construction can begin?

Distinct Approval Bodies

Are there townwide requirements for public hearings on any type of multi-family residential projects? Public Hearing Requirements
What is the maximum potential waiting time (in days) for government review of a typical new multi-
family building?

Max Review Waiting Time

Notes: This Table shows the mapping between the full regulatory questions and the short question name use throughout the paper. See Appendix Section C for further details on
questions.
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B Appendix: LLM Replicability

LLMs responses are not fully deterministic and so the results of this study cannot be completely

replicated for several reasons. First, LLMs sample tokens from a probability distribution leading to

variation in responses to the same query across iterations. Second, the GPT-4 class of models that

we use in this study follow a Mixture-of-Exports (MoE) architecture (see here and here for further

details). This means that the specific expert that an LLM query gets routed to varies across API

calls depending on supply/demand of experts. In turn, this implies that the underlying probability

distribution that tokens are sampled from may change from one query call to the next, depending

on the availability of experts. Moreover, OpenAI’s models are closed source so there may exist

other sources of randomness across API calls that we cannot explain.

In this section we quantify how deterministic LLM queries are in our use case and how ensembling

many query calls may help mitigate the issue. In general, we query the LLM to respond with a

detailed answer, (i.e. “Think step by step”) followed by a structured output (i.e. “Yes” or “No”).

Randomness in output for LLMs leads to a high frequency of variation in open-ended responses,

but many of these differences do not change the overall meaning of a response, for example just

swapping synonyms. However, we do find some variation in the structured output of LLM responses

in our use case.

One potential way to mitigate non-determinism is to request multiple responses from the LLM

and then aggregate the answers by majority rule, an ensemble approach. Previous research has also

found that ensemble methods can greatly improve LLM performance (Li et al., 2024).

With the OpenAI API there are two ways to ensemble API calls. The first way is to request

multiple chat completions for a given query (by setting the API parameter n > 1). This effectively

samples the distribution of tokens several times. This method is also cost effective because OpenAI

only charges the user once for the input tokens regardless of how many iterations of output tokens

are requested. However, this approach fails to sample from the distribution of potential experts

or other potential sources of variation, for example the hardware of the server in which the LLM

was run. A more costly approach is to separately query the LLM for each of the ensemble queries

paying for both the input and output tokens used in each call. This second approach more broadly
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samples from the various sources of randomness for an LLM response.

We measure replicability with two measures in this analysis. Both measures average pairwise

matching rates. We compare the final structured answer from a given LLM query across multiple

API calls for all pairs (n choose 2), and take the ratio of the number of pairs that match to the

total number of pairs. We call this ratio a consistency score. We measure both internal consistency,

scores from requesting multiple chat completions for a given query, and external consistency, scores

from comparing separate API calls.

We confirm that lower temperatures create more deterministic responses, even after ensembling.

In Table B1, we compare temperatures of 0, 0.5, and 1 (lower temperatures should mean more deter-

ministic responses) as well as whether including a random seed makes responses more deterministic.

We use a random sample of 30 municipalities from our national sample and use two questions, a

binary one (whether there are permits caps or project phasing) and a continuous one (how many

districts there are). For each specification we run the model five times, each time requesting 10 chat

completions. We measure internal consistency scores within a model run, and external consistency

across aggregated majority rule answers from each model run. We find that lower temperature mod-

els are more internally consistent, especially for the continuous question, and have a lower variance

of internal consistency. After aggregating responses, we find that external consistency scores are

fairly similar for the binary question, but still higher for the continuous one and with lower variance.

We also do not find evidence that including a random seed makes responses more deterministic.

We next show in Figure B1 that external consistency grows with ensemble size, especially for the

continuous question. This suggests that answers begin to stabilize at larger ensemble sizes, though

not fully. We still find that at least five percent of pairwise comparisons do not match even with

ensemble sizes of 10 and a temperature of 0. We also find that the zero temperature specification

already begins at a fairly high level of external consistency even with an ensemble size of 1.

Next, we ask how informative the internal consistency score is for predicting the external con-

sistency score. In Figure B2 we find that higher temperature model internal consistency scores are

highly predictive of external consistency and that this effect grows with ensemble size. However,

lower temperature models internal consistency scores are not very informative for external consis-

tency. This suggests that within model run variation for low temperature models may not reflect
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the same source of randomness as across model runs. For example, the variation in which expert

the query is routed to may be more important than the within expert sampling distribution for

predicting external consistency.

We next explore whether performance increases with ensemble size. For this analysis we return

to our testing sample of 30 Massachusetts municipalities where we have a clean dataset to compare

answers to. We use temperatures of 0 and 1 and request 10 chat completions from each model run.

We do not find evidence of increased performance with larger ensemble sizes. In Figure B3 we find

a fairly persistent outperformance of the 0 temperature model for the binary question and of the 1

temperature model for the continuous question.

We next ask whether internal consistency scores are helpful for predicting accuracy of ques-

tions. If the internal consistency score is highly predictive of the external consistency score then

the measure can be used as a model confidence measure. We find in Table B2 that the internal

consistency score is somewhat helpful for predicting accuracy with the temperature 1 model but

not helpful for the temperature 0 model. With a larger ensemble size of 100, (Wei et al., 2024)

found that answer frequency within an ensemble was highly predictive of accuracy, especially for

more advanced reasoning models.

We suggest researchers consider one of two specifications. First, a low temperature single shot

approach. This approach is cost effective by only requesting one chat completion, has a high degree

of external consistency, and is straightforward to explain. If a researcher wants to use an ensemble

approach then we suggest using a high temperature model with an ensemble size of at least five.

High temperature ensemble models have a high degree of external consistency and have informative

internal consistency scores for both predicting external consistency and accuracy. We choose to use

the first approach in this paper for the higher external consistency, cost savings, and for simplicity.
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Table B1: Internal and External Consistency Varying Temperature and Seed

External Consistency Internal Consistency
Mean Variance Mean Variance

Question Temperature Seed

Continuous:
Number of
Districts

0 No 0.91 0.05 0.9 0.05
Yes 0.89 0.04 0.9 0.04

0.5 No 0.83 0.09 0.68 0.1
Yes 0.8 0.11 0.67 0.1

1 No 0.75 0.11 0.61 0.1
Yes 0.78 0.11 0.64 0.1

Binary:
Whether
Permit Caps
or Phasing

0 No 0.93 0.03 0.96 0.02
Yes 0.92 0.03 0.95 0.02

0.5 No 0.93 0.03 0.88 0.04
Yes 0.9 0.05 0.89 0.04

1 No 0.91 0.04 0.88 0.04
Yes 0.92 0.04 0.86 0.04

Notes: This Table compares the internal and external consistency of LLM responses across different temperature settings and with/without
a random seed. “Temperature” refers to the randomness in the LLM’s output (0 being most deterministic, 1 being most random). “Seed”
indicates whether a random seed was used for replicability. “External Consistency” measures agreement across separate API calls, while
“Internal Consistency” measures agreement within a single API call requesting multiple completions. Results are shown for two types of
questions: a continuous question about the number of zoning districts, and a binary question about permit caps or phasing. Mean values
closer to 1 indicate higher consistency. Lower variance indicates more stable results across trials.

Table B2: Regression of Internal Consistency Score on Whether Correct

Temp = 0 Temp = 1
(1) (2) (3) (4)

Consistency Score 0.2603 0.4175*
(0.3614) (0.2097)

Question FE Yes Yes Yes Yes
R-squared 0.1383 0.1461 0.2188 0.2696
N 60 60 60 60

Notes: This table presents regression results examining the relationship between the internal consistency score of LLM responses and
their accuracy. The dependent variable is a binary indicator for whether the LLM’s response is correct. Results are shown for two
temperature settings: 0 (most deterministic) and 1 (most random). Columns 1 and 3 include only question fixed effects, while columns
2 and 4 add the consistency score as an explanatory variable. Standard errors are in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure B1: External Consistency vs. Ensemble Size

Continuous: Number of Districts Binary: Whether Permit Caps or Phasing

Notes: This Figure shows how external consistency of LLM responses varies with ensemble size for two types of questions: a continuous
question about the number of zoning districts (left) and a binary question about permit caps or phasing (right). The x-axis represents
the ensemble size (number of model runs aggregated), while the y-axis shows the external consistency score. Different lines represent
various temperature settings (0, 0.5, 1) and whether a random seed was used.

Figure B2: Relationship Between Internal and External Consistency vs. Ensemble Size

Continuous: Number of Districts Binary: Whether Permit Caps or Phasing

Notes: This figure demonstrates the relationship between internal and external consistency of LLM responses as a function of ensemble
size for two types of questions: a continuous question about the number of zoning districts (left) and a binary question about permit
caps or phasing (right). The x-axis represents the ensemble size, while the y-axis shows the R-squared value, indicating how well internal
consistency predicts external consistency. Different lines represent various temperature settings (0, 0.5, 1) and whether a random seed
was used.
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Figure B3: Ensemble Size vs. Percent Correct

Continuous: Number of Districts Binary: Whether Permit Caps or Phasing

Notes: This Figure illustrates the relationship between ensemble size and accuracy of LLM responses for two types of questions: a
continuous question about the number of zoning districts (left) and a binary question about permit caps or phasing (right). The x-axis
represents the ensemble size (number of model runs aggregated), while the y-axis shows the percent of correct responses. Two temperature
settings are compared: 0 (blue line, most deterministic) and 1 (orange line, most random). For the continuous question, accuracy is
measured as the percentage of responses within a certain tolerance of the true value, while for the binary question, we use the percentage
of correct classifications.
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C Appendix: Question Details

This appendix provides detailed information about each question used in the study. Each question

is presented with its original phrasing by the Pioneer Institute, the text that we embed for the

question, background information and assumptions, question type, and the rephrased question that

the language model sees. For some questions, we also include a value that triggers double-checking

if the model’s answer does not match it, along with the rephrased question used for double-checking

and the keywords used to build context during the double-checking process. Additionally, certain

questions involve subtasks, which are described in detail.

System Prompts for Each Question Type

We use a system prompt to guide the LLM in how to respond. Part of the system prompt includes

details on how to structure the response, so we vary the exact system prompt by qustion type.

Numerical Questions: "You are a municipal zoning ordinance expert. Use the following context

which follows ’Context: ’ from a municipal ordinance about zoning laws to answer the question

which follows ’Question: ’. You think step by step and justify each step with explanations and

evidence from the context. At the end of your argument, you explicitly state your answer in the

format of ’ANSWER: ’ followed by a number or ’I DON’T KNOW’."

Binary Questions: "You are a municipal zoning ordinance expert. You use the following con-

text which follows ’Context: ’ from a municipal ordinance to answer the question which follows

’Question: ’. You first review the background information on the question following ’Background

Information on Question:’ and treat it as additional instructions. You assume that the context

includes all of the relevant legal information for the question. You review the context thoroughly

for evidence to answer the question. When you cannot find any relevant information in the con-

text, you realize that the town does not have relevant laws for the question and you reference the

question background for how to handle this situation. You think step by step and justify each step

with explanations and evidence from the context. At the end of your argument, you review what the

answer should be and then explicitly state your answer in the format of ’ANSWER: ’ and then one

of ’YES’, ’NO’, or ’I DON’T KNOW’."
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Lot Size Questions: "You are a municipal zoning ordinance expert. Use the following context

which follows ’Context: ’ from a municipal ordinance about zoning laws to answer the question

which follows ’Question: ’. Refer to the question background section for detailed instructions on

how to answer the question. You think step by step and justify each step with explanations and

evidence from the context. At the end of your answer, you say ’ANSWER:’ and then reply with

a CSV format with a column for ’District Name’, ’Minimum Lot Size’, ’Unit’, and perhaps more

depending on the question background. Ensure that you only include one row per district."

Question 4

Question Phrased by Pioneer: Is multi-family housing allowed, either by right or special permit

(including through overlays or cluster zoning)?

Question Text That We Embed: Is multi-family housing allowed, either by right or special

permit (including through overlays or cluster zoning)?

Question Background and Assumptions: Multi-family housing comes in a wide variety of

forms and sizes. The ways municipalities define and categorize “multi-family” housing varies widely,

as do the use-regulations that govern multi-family housing development. This study includes as

“multi-family” any building with three or more dwelling units. Multi-family dwelling units can be

rental or condominium. They can be in a freestanding residential building or part of a mixed-use

building, new construction or conversion of a preexisting building. Zoning documents usually specify

what kinds of buildings qualify for conversion to multi-family housing: single family houses, two

family houses, mills, schools, churches, municipal buildings or other types of facilities. Freestanding

new "Multi-family" housing is defined as any building with three or more dwelling units, excluding

townhouses, unless a municipality includes townhouses in its broader definition of multi-family

housing and effectively permits only townhouses as such. Assisted living facilities, congregate care

homes, dormitories, and lodging houses are not considered multi-family housing. If the zoning laws

allow for conversion to multi-family housing, but do not comment on whether new multi-family

housing is allowed, then the answer is ’YES’. Most towns allow a form of multi-family housing.

Question Type: Binary
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Rephrased Question the LLM Sees: Is multi-family housing allowed at all in any district or

overlay? If multi-family housing is allowed by special permission in any district or overlay then that

counts allowed.

Question 5

Question Phrased by Pioneer: Are apartments above commercial (mixed use) allowed in any

district?

Question Text That We Embed: Are apartments above commercial (mixed use) allowed in any

district?

Question Background and Assumptions: Zoning bylaws and ordinances in various municipal-

ities often contain provisions for combining residential dwellings with commercial uses such as retail

or office spaces, creating mixed-use developments. While some zoning regulations explicitly allow

multi-family housing and retail to coexist within the same district, they may not clarify whether

these uses can share the same building, leaving this to be determined in practice. Certain munic-

ipalities explicitly permit "combined dwelling/retail" configurations in their use regulation tables,

sometimes noting that any uses allowed within the same district can occupy the same building.

Additionally, detailed provisions for mixed-use are facilitated through special zoning arrangements

like overlay districts (e.g., mixed use district, downtown overlay, or planned unit development)

or conversion projects, such as transforming former mills to accommodate both retail and hous-

ing. However, it’s important to note that some references to "mixed use" may actually pertain

to commercial and industrial combinations, excluding residential components. If you cannot find

any reference to residential and commercial uses in the same building within the context then you

assume that the answer is ’NO’.

Question Type: Binary

Rephrased Question the LLM Sees: Is a combination of commercial and residential uses in the

same building or structure allowed in any zoning district?
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Question 6

Question Phrased by Pioneer: Is multi-family housing listed as allowed through conversion (of

either single family homes or non residential buildings)?

Question Text That We Embed: Is multi-family housing listed as allowed through conversion

(of either single family homes or non residential buildings)?

Question Background and Assumptions: The development of multifamily housing through the

conversion of existing buildings encompasses two primary approaches: transforming single-family

or two-family houses into structures with at least three units, and repurposing non-residential

buildings, such as mills, other industrial buildings, schools, and municipal buildings, for multi-

family residential use. This is different from the ability to construct new multi-family housing.

The conversion of non-residential structures often occurs through designated overlay districts, like

Mill Conversion Overlay Districts, or within industrial zones, whereas the conversion of houses to

accommodate more units typically takes place in residential or business districts. The question does

not count the conversion of single-family homes into two-family dwellings as allowing conversion

to multi-family dwellings because multi-family is defined as having at least three units. If the

conversion requires a special permit then we consider that as allowing conversion. Assisted living

facilities, congregate care homes, dormitories, and lodging houses are not considered multi-family

housing. The allowance of multi-family housing does not imply the allowance of the conversion to

multi-family housing. You must search for an explicit statement allowing the conversion to multi-

family housing from another type of structure. If you do not find any mention of conversions in the

context then you assume the answer is ’NO’.

Question Type: Binary

Rephrased Question the LLM Sees: In any district, is the conversion to multi-family explictly

allowed under any scope?

If The Answer Is Not This Value Then We Double Check: Yes

Rephrased Question the LLM Sees When Double Checking: In any district, is the conver-

sion to multi-family explictly allowed under any scope?

Keywords We Use to Build Context When Double Checking in Order of Importance:
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’conver’

Question 8

Question Phrased by Pioneer: Are attached single family houses (townhouses, 3+ units) listed

as an allowed use (by right or special permit)?

Question Text That We Embed: Are attached single family houses (townhouses, 3+ units)

listed as an allowed use (by right or special permit)?

Question Background and Assumptions: The question asks whether some form of attached

housing is allowed in the municipality. Common forms of attached housing are single-family attached

homes, townhouses, rowhouses, and zero lot line dwelling units. Attached housing is often allowed

through special zoning provisions, such as overlay districts or use provisions tailored for cluster

developments, Planned Unit Developments (PUD), or communities for active adults aged 55 and

over. Remember that accessory apartments to a single-family home or the ability to attach one

unit to a single-family home do not count as attached housing. Duplexes also do not count as

attached housing. A form of attached housing may be listed as a type of single-family or multi-

family housing. However, the allowance of single-family or multi-family housing does not imply the

allowance of attached housing. This context raises the question of whether any type of attached

housing are allowed either as their own category of housing or explicitly as a type of single family or

multi-family housing. If you do not find any mention of a type of attached housing in the context

then you assume that the answer is ’NO’.

Question Type: Binary

Rephrased Question the LLM Sees: Is some form of attached housing allowed in any district

of the town?

If The Answer Is Not This Value Then We Double Check: Yes

Rephrased Question the LLM Sees When Double Checking: Is some form of attached

housing allowed in any district of the town?

Keywords We Use to Build Context When Double Checking in Order of Importance:
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’town house’, ’town houses’, ’townhouse’, ’townhouses’, ’attached dwelling’, ’attached dwellings’,

’row house’, ’row houses’, ’rowhouse’, ’rowhouses’, ’attached single family’, ’attached unit’, ’attached

units’, and ’attached’

Question 9

Question Phrased by Pioneer: Does zoning include any provisions for housing that is restricted

by age?

Question Text That We Embed: Does zoning include any provisions for housing that is re-

stricted by age?

Question Background and Assumptions: Many zoning bylaws/ordinances include provisions

for housing that is deed restricted to occupants 55 (or another age) and older. Some of the provisions

are for developments that are entirely age-restricted, while other provisions are incentives, often

density bonuses, to include age-restricted units within an unrestricted development, such as cluster

or multi-family. The restricted developments are called active adult housing, adult retirement

village, senior village, planned retirement community, or something similar.

The answer should be Yes if any provisions exist for age-restricted single-family, townhouse,

duplex, multi-family or accessory apartments. Provisions can be in the form of an age-restricted

overlay, cluster development, density bonus for age-restricted units, or other zoning requirements

or incentives for age-restricted housing.

Question Type: Binary

Rephrased Question the LLM Sees: Does zoning include any provisions for housing that is

restricted by age?

Question 11

Question Phrased by Pioneer: Are accessory or in-law apartments allowed (by right or special

permit) in any district?
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Question Text That We Embed: Are accessory or in-law apartments allowed (by right or special

permit) in any district?

Question Background and Assumptions: Accessory dwellings are separate housing units typ-

ically created in surplus or specially added space in owner-occupied single-family homes. Accessory

dwellings can also be attached to the primary dwelling or be situated on the same lot (for example

in a carriage house or small cottage.) An accessory dwelling typically has its own kitchen and

bathroom facilities, not shared with the principal residence. Many zoning bylaws/ordinances call

the dwellings “in-law apartments” or “family apartments” and restrict their occupancy to relatives

of the homeowner - “related by blood, marriage or adoption.” Some of these also allow domestic

employees, caregivers, elderly people or people with low incomes to live in the units. Some munici-

palities allow the apartment by right if a family member will occupy the accessory apartment, but

require a special permit otherwise. If you cannot find any reference to accessory apartments in the

context then you assume that the answer is ’NO’.

Question Type: Binary

Rephrased Question the LLM Sees: Are accessory or in-law apartments allowed in any district?

If they are allowed by special permit in any district then we count that as allowed.

Question 13

Question Phrased by Pioneer: Is cluster development, planned unit development, open space

residential design, or another type of flexible zoning allowed by right?

Question Text That We Embed: Is cluster development, planned unit development, open space

residential design, or another type of flexible zoning allowed by right?

Question Background and Assumptions: Flexible zoning, encompassing terms like open space

residential design, cluster, planned unit development, or conservation subdivision, provides munic-

ipalities with a more adaptable approach to zoning beyond the traditional “as-of-right” options.

This methodology allows developers to bypass the stringent requirements of standard zoning, such

as specific lot sizes and setback mandates, and enables the incorporation of various residential unit
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types like townhouses, duplexes, and multi-family homes that might not be allowed under conven-

tional zoning regulations. The question only considers provisions that are primarily for residential

uses. Most municipalities require special permits for cluster/flexible development.

Question Type: Binary

Rephrased Question the LLM Sees: Is the answer yes to any of the following question? Ques-

tion 1: Is cluster development allowed explictly by right in any district? Question 2: Is open space

residential design allowed explictly by right in any district? Question 3: Is any type of flexible

zoning other than cluster development and open space residential design allowed explictly by right

in any district?

Question 14

Question Phrased by Pioneer: Is cluster development, planned unit development, open space

residential design, or another type of flexible zoning allowed by special permit?

Question Text That We Embed: Is cluster development, planned unit development, open space

residential design, or another type of flexible zoning allowed by special permit?

Question Background and Assumptions: Flexible zoning, encompassing terms like open space

residential design, cluster, planned unit development, or conservation subdivision, provides munic-

ipalities with a more adaptable approach to zoning beyond the traditional “as-of-right” options.

This methodology allows developers to bypass the stringent requirements of standard zoning, such

as specific lot sizes and setback mandates, and enables the incorporation of various residential unit

types like townhouses, duplexes, and multi-family homes that might not be allowed under conven-

tional zoning regulations. The question only considers provisions that are primarily for residential

uses. Most municipalities require special permits for cluster/flexible development so if you find sug-

gestive evidence that the municipality allows cluster/flexible development by special permit then

you assume that the answer is ’YES’.

Question Type: Binary

Rephrased Question the LLM Sees: Is the answer yes to any of the following question? Ques-
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tion 1: Is cluster development allowed in any district, including by special permit? Question 2: Is

open space residential design allowed in any district, including by special permit? Question 3: Is

any type of flexible zoning other than cluster development and open space residential design allowed

in any district, including by special permit?

Question 17

Question Phrased by Pioneer: Does the zoning bylaw/ordinance include any mandates or

incentives for development of affordable units?

Question Text That We Embed: Does the zoning bylaw/ordinance include any mandates or

incentives for development of affordable units?

Question Background and Assumptions: Inclusionary zoning requires or encourages devel-

opers to include affordable dwelling units within new developments of market rate homes. Some

municipalities call it “incentive zoning” - when provision of affordable units is voluntary. The af-

fordable units are typically located on site, but some municipalities also allow off-site development

under certain circumstances. Often, payments may be made to a trust fund in lieu of building

housing. Housing designated as “affordable” must be restricted by deed or covenant, usually for a

period of 30 or more years, to residents with low or moderate incomes. The deed restrictions also

limit sales prices and rents as the units are vacated, sold or leased to new tenants.

Do not include provisions for entirely affordable, subsidized housing development by public or

non-profit corporations. Also do not include provisions under “rate of development” headings that

exempt affordable units from project phasing and growth caps.

Question Type: Binary

Rephrased Question the LLM Sees: Does the zoning bylaw/ordinance include any mandates

or incentives for development of affordable units?
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Question 20

Question Phrased by Pioneer: Is there a town-wide annual or biannual cap on residential

permits issued, and/or is project phasing required?

Question Text That We Embed: Is there a town-wide annual or biannual cap on residential

permits issued, and/or is project phasing required?

Question Background and Assumptions: Some municipalities enact town-wide caps limiting

the number of units that can come on line annually or biannually. The number of permits is often

set at the average in the previous years. Note that this question asks only about town-wide caps and

does not consider caps exclusive to a specific district in the town. Some municipalities require phased

growth for individual developments (also known as development scheduling or buildout scheduling)

- a technique that allows for the gradual buildout of approved subdivisions over a number of years.

Note that we only consider project phasing when it is required and not when it is optional. Project

phasing is usually triggered by a minimum number of units in the project, so small subdivisions

can be constructed in one year. Some phasing provisions are only triggered at the town-wide level

once a threshold number of units have been permitted. Most of the “rate of development” provisions

include an expiration or “sun set” date (some that have expired have been updated and re-adopted).

Many include a “point system” where points are awarded for provision of community goods such

as open space or affordable units, and projects with more points are given priority for permits. If

you do not find any information in the context about a town-wide annual or biannual cap or about

project phasing then you assume the answer is ’NO’.

Question Type: Binary

Rephrased Question the LLM Sees: Is the answer yes to any of the following question? Ques-

tion 1: Is there a town-wide annual or biannual cap on residential permits issued Question 2: Is

project phasing required?
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Question 21

Question Phrased by Pioneer: Are there restrictions on counting wetlands, sloped land or

easements in lot size calculations?

Question Text That We Embed: How is lot area defined and how is the lot size calculated?

Question Background and Assumptions: Remember to first review your research so far on how

a lot size is calculated and defined. If you have already found a restriction on including wetlands,

sloped land, or easements in your prior research then the answer is ’YES’.

Some municipalities require that the minimum lot size requirement be met by a percentage of

land that does not include wetland resource areas, steeply sloped land or easements. A subset of

those municipalities requires that the buildable area be contiguous on the lot – called “contiguous

buildable area” or “contiguous upland area.” Upland area is non-wetland area. It is much more

common for municipalities to restrict the use of wetlands areas in meeting lot size requirements

than sloped land or easements.

Note that this question only asks about whether there are restrictions on calculating the lot

size. It does not ask about whether there are restrictions to buildable area or whether there are

any restrictions in wetland areas.

If you do not find any restrictions for lot size calculations in the context then you assume that

the answer is ’NO’.

Question Type: Binary

Rephrased Question the LLM Sees: Detail how lot area is defined and how a lot size is

calculated. Then, answer the question of are there restrictions on counting wetlands, uplands, or

sloped land in lot area/lot size calculation?

If The Answer Is Not This Value Then We Double Check: Yes

Rephrased Question the LLM Sees When Double Checking: Are there restrictions on

counting wetlands, sloped land or easements in lot size calculations?

Keywords We Use to Build Context When Double Checking in Order of Importance:

’wetland’, ’upland’, ’sloped land’, and ’easement’
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Question 28

Question Phrased by Pioneer: What is the minimum lot size for single-family homes in each

residential district?

Question Text That We Embed: What is the minimum lot size for single-family homes in each

residential district?

Question Background and Assumptions: When compiling a list of minimum lot sizes for

districts that permit single-family housing, prioritize clarity by selecting the specific minimum lot

size for single-family homes within each district. If multiple options exist, choose the most common

standard size, excluding sizes for historic properties or special cases. Report sizes in square feet over

acres unless only acre measurements are available. Only include districts with a defined minimum

lot size or those adhering to a town-wide minimum if no district-specific size is established. Finalize

the data in a CSV format with columns for ’District Name’, ’Min Lot Size’, ’Unit’, and ’Estate’,

ensuring a straightforward, single entry for each district that reflects the standard requirement for

single-family homes.

Question Type: Lot Size

Rephrased Question the LLM Sees: What is the minimum lot size for single-family homes in

each residential district?

Subtask:

• Subtask Question That Gets Embedded: Find the name of each district that allows single-

family housing

• Rephrased Subtask Question the LLM Sees: Find the name of each district that allows single-

family housing

• Additional Subtask Instructions: Please list out the name of each residential district in the

town that primarily consist of detached single-family housing. If you cannot find any districts

that explictly allow single-family detached housing then just assume that any residential

districts allow single-family detached housing. Respond with a detailed answer followed by a

CSV format with the name of the district in the first column and whether a district has the

110



label ’Estate’ in the second column as a True/False statement. Use the column headers of

’District Name’ and ’Whether Estate District’.

• How The Subtask Results Are Described to the LLM Afterwards: Your previous work finding

which districts to find minimum lot sizes for and whether they are estate districts

Question 2

Question Phrased by Pioneer: How many zoning districts, including overlays, are in the mu-

nicipality?

Question Text That We Embed: How many zoning districts, including overlays, are in the

municipality?

Question Type: Numerical

Rephrased Question the LLM Sees: How many zoning districts and overlays are in the munic-

ipality?

Question 22

Question Phrased by Pioneer: What is the longest frontage requirement for single family

residential development in any district?

Question Text That We Embed: What is the longest frontage requirement for single family

residential development in any district?

Question Type: Numerical

Rephrased Question the LLM Sees: What is the longest frontage requirement for single family

residential development in any district?

Subtask:

• Subtask Question That Gets Embedded: Find the name of each single-family residential

district
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• Rephrased Subtask Question the LLM Sees: Find the name of each single-family residential

district

• Additional Subtask Instructions: Please list the names of each single-family residential district.

Only include districts that are primarily residential. Usually, this means districts that start

with the letter R like R1. If there is only one residential district that permits single-family

zoning then just name that one district. If you are unsure whether a residential district

permits single-family zoning then assume that it does, but ensure that the district is primarily

residential. An agricultural (A) or industrial (I) district would not be included for example.

• How The Subtask Results Are Described to the LLM Afterwards: Only consider the frontage

requirements in the following districts

Question 17w

Question Text That We Embed: Do developers have to comply with the requirement to include

affordable housing, however defined, in their projects?

Question Background and Assumptions: Zoning codes may require developers to include

affordable housing in market-rate residential projects, but the applicability of these requirements

can vary. Some inclusionary policies apply broadly to all residential development, while others are

tied to optional zoning designations, incentive programs, or specific areas.

To determine if a zoning code contains a mandatory inclusionary requirement, look for clear

language stating that all or most market-rate residential projects must provide affordable units as a

standard condition of approval under normal zoning rules. The requirement should not be limited

to projects that opt into a special zoning designation, participate in an incentive program, or are

located in a particular overlay zone.

Focus on whether the code unambiguously requires all or most market-rate residential develop-

ment to include affordable housing under the generally applicable rules. Do not select "YES" if

affordable housing is only mandatory in narrow, specialized situations. The mere presence of afford-
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able housing provisions is not sufficient if they are elective or only apply in atypical circumstances.

If the affordable housing requirements are not clearly universally applicable, the likely answer is

"NO".

Question Type: Binary

Rephrased Question the LLM Sees: Do developers have to comply with the requirement to

include affordable housing, however defined, in their projects?

Question 30

Question Text That We Embed: How many mandatory steps are involved in the approval

process for a typical new multi-family building?

Question Background and Assumptions: The approval process for constructing a new multi-

family building typically involves multiple mandatory steps, each representing a distinct interaction

or requirement that a developer must fulfill before construction can begin. Focus on identifying only

the core, pre-construction approval steps that are required for all multi-family building projects,

from initial application submission to final permit issuance. Each required interaction with a distinct

city department or agency should be counted as a separate step, but be careful not to artificially

separate closely related actions within a single process. For example, applying for and obtaining

a building permit should be considered one step, not two. Be cautious not to include optional or

discretionary steps, post-approval activities such as inspections during construction or certificate

of occupancy issuance, steps that are only required in specific circumstances or for certain types

of properties, or internal processes within departments that don’t require direct developer interac-

tion. When analyzing the ordinances, pay close attention to language indicating whether a step is

mandatory (e.g., "shall", "must", "is required") versus optional or conditional (e.g., "may", "at the

discretion of", "if applicable"). The goal is to identify the minimum number of distinct, mandatory

steps that every multi-family building project must go through in the approval process, avoiding

redundancy and over-segmentation of closely related actions.

Question Type: Numerical
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Rephrased Question the LLM Sees: How many mandatory steps are involved in the approval

process for a typical new multi-family building?

Question 31

Question Text That We Embed: For a typical new multi-family building project in this ju-

risdiction, how many distinct governing bodies or agencies must give mandatory approval before

construction can begin?

Question Background and Assumptions: When answering this question, focus on the approval

process for a typical new multi-family building project as described in the provided ordinance sec-

tions. Only count distinct governing bodies or agencies whose approval is explicitly required by the

ordinances for all multi-family building projects, including those allowed "by right" under existing

zoning. To be counted, an entity must have clear, independent approval authority that is manda-

tory for the project to proceed. This approval must be specifically for the multi-family project

itself. Look for unambiguous language indicating required, independent approval steps. Distinguish

between actual approval authority and advisory roles; entities that only review or provide input

should not be counted. Consider roles like the Planning Board, Board of Health, Building Commis-

sioner, and special permit granting authorities, but include them only if their approval is explicitly

required and independent. For coordinated review processes, determine whether they represent

multiple independent approvals or a single approval incorporating multiple inputs. Provide your

answer as a number, followed by a brief explanation of which entities you counted and why. Cite

relevant ordinance sections, explaining why each approval is considered independent and manda-

tory, and how it relates specifically to the multi-family project.

Question Type: Numerical

Rephrased Question the LLM Sees: For a typical new multi-family building project in this

jurisdiction, how many distinct governing bodies or agencies must give mandatory approval before

construction can begin?
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Question 32

Question Text That We Embed: Are there townwide requirements for public hearings on any

type of multi-family residential projects?

Question Background and Assumptions: When answering this question, examine the zoning

ordinances and bylaws for any townwide requirements that mandate public hearings or formal public

input processes for multi-family residential developments. Focus on requirements that apply across

all zones within the town. Answer YES if public hearings are required for any subset of multi-family

projects, even if not all multi-family projects require hearings. For instance, if larger projects require

public hearings while smaller ones don’t, the answer should still be YES. Requirements specific to

certain zones do not count towards a YES answer. Answer NO only if there are no townwide public

hearing requirements for multi-family developments of any size or type, or if such requirements only

apply in specific zones. Be sure to cite relevant ordinance sections that support your conclusion.

The goal is to determine whether there is any mandated opportunity for public input on new multi-

family housing developments on a townwide basis, even if this only applies to certain categories of

multi-family projects.

Question Type: Binary

Rephrased Question the LLM Sees: Are there townwide requirements for public hearings on

any type of multi-family residential projects?

Subtask:

• Subtask Question That Gets Embedded: Do any types of multi-family housing projects require

a special permit in this jurisdiction? If so, under what conditions?

• Rephrased Subtask Question the LLM Sees: What is the typical approval process for new

multi-family building projects in this jurisdiction? Please describe any required permits,

reviews, or other procedures that are standard for multi-family developments.

• Additional Subtask Instructions: Do any types of multi-family housing projects require a

special permit in this jurisdiction? If so, under what conditions?

• How The Subtask Results Are Described to the LLM Afterwards: Special Permit Require-
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ments for Multi-Family Housing Developments

Question 34

Question Text That We Embed: What is the maximum potential waiting time (in days) for

government review of a typical new multi-family building?

Question Background and Assumptions: The review process for constructing a new multi-

family building involves several stages, each of which may have a specific waiting period. The

total waiting time includes the mandatory review periods as well as any discretionary days that

can be added by the governing bodies or agencies. Each agency or department that a developer

must interact with, such as city government departments like fire, police, sanitation, building, and

planning, has its own review timeline. Additionally, discretionary days that may be required for

public hearings, environmental reviews, or other procedural requirements must also be added to the

total count of government review days.

Question Type: Numerical

Rephrased Question the LLM Sees: What is the maximum potential waiting time (in days)

for government review of a typical new multi-family building?
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D Appendix: Comparison With Wharton Study

The Wharton Residential Land Use Regulation Index (WRLURI) is a survey-based measure of

local housing market regulations. In this section we compare our study to the 2018 version of

the index (Gyourko et al., 2021). The survey was administered through the International City

Managers Association (ICMA) to its 10,949 member municipalities at the time, receiving 2,825

responses for a response rate of 25.8%. In Table D1, we compare our dataset’s sample coverage

with that of the Wharton index. Our analysis reveals superior coverage across the distribution of

various demographic and housing characteristic variables. We especially have greater coverage for

low population, low white share, high college share, and high median home value local governments.

In Panel A of Table D2, we compare question level responses focusing on two areas where

our question bases overlap: affordable housing mandates and minimum lot sizes. Our measure of

affordable housing shows a substantial correlation of 0.38 with the Wharton measure. For minimum

lot size requirements, we find smaller but meaningful correlations ranging from 0.18 to 0.37 across

different size categories. We next compare the accuracy of each study for the highest minimum lot

size by benchmarking responses against independently sourced geographic data from Massachusetts

GIS in Panel B. Our approach achieves an average accuracy rate of 77%, substantially higher than

Wharton’s 50% accuracy rate when compared against the same ground-truth data.

In Table D3, we examine correlations between our principal components and the Wharton index.

We find positive but somewhat low correlations ranging from 0.11 to 0.33. Besides differences in

question-level accuracy, our study exclusively measures regulation, while WRLURI takes a broader

approach. Of its 71 sub-questions, only 56.3% directly measure zoning regulations. The remaining

questions cover important aspects of the housing production process, such as approval processes

and timelines in practice (22.5%), but also questions less relevant to a strictly regulatory index,

like housing market outcomes and market conditions (i.e., whether single-family housing supply

meets demand). This broader scope is reflected in the PCA weights in the Wharton index. The

highest weights are assigned to process-based measures, such as court involvement, state political

involvement, and local political pressure indices, while direct regulatory measures such as supply
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Table D1: Sample Coverage Comparison With Wharton Index

Variable Distribution Percentiles
Variable Bottom 5% 5-25th 25-50th 50-75th 75-95th Top 5%
Population
Wharton Sample (%) 0.0 0.0 0.0 5.1 25.1 31.6
Our Sample (%) 0.3 0.7 3.8 13.7 40.5 65.3
Difference (p.p.) 0.3 0.7 3.8 8.7 15.4 33.7
Owner-Occupied Share
Wharton Sample (%) 12.2 13.8 8.8 6.1 3.2 0.1
Our Sample (%) 30.9 29.2 17.7 10.8 5.9 0.2
Difference (p.p.) 18.8 15.5 8.9 4.7 2.7 0.1
65+ Population Share
Wharton Sample (%) 2.7 9.8 10.5 8.6 4.8 1.4
Our Sample (%) 7.7 21.8 20.5 15.3 10.1 6.0
Difference (p.p.) 5.0 11.9 10.0 6.7 5.3 4.6
Under 18 Share
Wharton Sample (%) 0.4 5.8 10.3 10.5 7.4 1.2
Our Sample (%) 2.6 12.1 19.2 21.3 15.4 4.5
Difference (p.p.) 2.2 6.3 9.0 10.9 8.0 3.3
White Share
Wharton Sample (%) 11.2 15.1 9.8 6.0 1.5 0.0
Our Sample (%) 34.5 35.8 18.7 8.0 1.7 0.4
Difference (p.p.) 23.3 20.7 8.9 2.1 0.2 0.3
College Share
Wharton Sample (%) 0.2 2.3 6.0 8.9 14.3 16.9
Our Sample (%) 1.4 6.9 11.6 15.6 27.0 46.8
Difference (p.p.) 1.1 4.6 5.6 6.8 12.7 30.0
Median Home Value
Wharton Sample (%) 0.5 3.0 6.5 9.1 13.8 23.3
Our Sample (%) 1.7 6.7 12.1 14.1 27.9 71.4
Difference (p.p.) 1.1 3.7 5.5 5.1 14.1 48.1

restrictions and density restrictions indices receive the smallest loadings.18

18The factor loadings from the principal component analysis used to construct the WRLURI2018 are: Court
Involvement Index (0.42), State Political Involvement Index (0.41), Local Political Pressure Index (0.40), Environ-
mental Index (0.28), Approval Delay Index (0.28), Local Project Approval Index (0.29), Local Zoning Approval Index
(0.27), Open Space Index (0.24), Affordable Housing Index (0.27), Local Assembly Index (0.17), Supply Restrictions
Index (0.12), and Density Restrictions Index (0.09).
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Table D2: Correlation With Wharton Index

Panel A: Averages and Correlation For Wharton Questions

Question Wharton Average Our Average Correlation

Affordable Housing 0.20 0.06 0.38

Minimum Lot Size Less than 1/2 acre 0.50 0.49 0.37
1/2 to 1 acre 0.17 0.13 0.18
1 to under 2 acres 0.12 0.17 0.26
2 acres or more 0.22 0.16 0.27

Panel B: Comparison to Massachusetts GIS Minimum Lot Sizes

Massachusetts
GIS Data

Less than
1/2 acre

1/2 to
1 acre

1 to under
2 acres

2 acres
or more

Average
Accuracy

Our Model Less than 1/2 acre 6 2 0 1
1/2 to 1 acre 1 12 1 1
1 to under 2 acres 0 1 23 2
2 acres or more 1 0 4 8
Percent Correct 75% 80% 82% 67% 77%

Wharton Less than 1/2 acre 3 3 1 0
1/2 to 1 acre 4 6 7 0
1 to under 2 acres 0 4 13 2
2 acres or more 1 2 7 10
Percent Correct 38% 40% 46% 83% 50%

Notes: The sample overlap between this study and Gyourko et al. (2021) is 1,171 municipalities. We drop municipalities
that do not have any minimum lot size requirements. The Affordable Housing questions refers only to affordable housing
mandates, not incentives, and the minimum lot size questions refers only to residential districts. Massachusetts GIS data
comes from MassGIS (Bureau of Geographic Information). To find the highest residential min lot size from MassGIS we
first drop districts with missing/no min lot size info and then drop districts not flagged as single family zoned.

Table D3: Index Level Wharton Correlations

Wharton Index PC 1 PC 2 Overall Index

Wharton Index 1.00 0.33 0.11 0.22
PC 1 0.33 1.00 0.07 0.36
PC 2 0.11 0.07 1.00 0.74
Overall Index 0.22 0.36 0.74 1.00

The Overall Index sums the z-scores of all zoning questions.
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E Appendix: Economic Model of Housing Regulation and

Municipal Zoning

This appendix provides a detailed technical exposition of a model used to analyze municipal zoning

regulations, household location choices, and government policy. The model combines a spatial

equilibrium framework with non-cooperative local government optimization to explain the key facts

around housing production, choice of regulations, and socio-economic sorting which we observe in

our key facts.

E1 Model Setup

Agents and Locations: To capture the key socio-economic differences among agents, we define

households as of two types: low productivity (L) and high productivity (H), earning wages wL

and wH , respectively). These agents decide to live in one of two zones, reflecting the key spatial

differences within urban areas as either a city core c and a suburb s, which are differentiated by

distinct amenities (αc, αs) and regulatory environments. ηi =
NH

i

Ni
is therefore the share of high

productivity workers in each zone. Denote w̃i = wH
i · ηi + wL

i · (1 − ηi) as the effective wage, and

Ñi = wL
i ·NL

i + wH
i ·NH

i as the effective population.

Government Structure: Local governments within each zone i ∈ {c, s} levy a homogeneous

wage tax τ and differentiated housing tax ti. Governments produce public services si using labor

Gi, paid for by low productivity workers, and maximize net revenue.

Housing Market: The housing market clears through spatial sorting of workers. Housing rents

ri in each region are upward sloping and depend on local population density:

ri = r̄i + βi · log(NL
i · hL

i +NH
i · hH

i )

where r̄i is the baseline rent fixed in each region, βi > 0 governs the supply elasticity, and NJ
i is

the population of type j in zone i.
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E2 Household Problem

Households maximize utility by choosing consumption (c), housing (h), and location (choice of i).

The utility function for a household of type j in zone i is:

U j
i = max

c,h
γ log c+ (1− γ) log h+ αi − log(Ni) + log(si)

subject to the budget constraint:

c+ h · ri = (1− τ) · wj.

Utility in this framework is decreasing in local population (Ni) due to congestion, and increasing

in public services si. Housing demand in this framework therefore satisfies:

hi =
(1− γ)(1− τ)wj

ri
.

E3 Government Problem

Local governments maximize net revenue:

max
Gi,ti,hi

[τ + (1− γ) · ti] · (wL ·NL
i + wH ·NH

i )− wL · log(Gi),

subject to a production function on public services:

si = γi exp(Gi),

a requirement on minimum housing consumption, which corresponds to exclusionary zoning:

hj
i ≥ hi,

a population constraint:

NL
i +NH

i = Ni
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and a balanced budget requirement:

Ni · [ti · ri + τ · w̃i(ηi)] ≥ wL · log(Gi).

The two key government regulatory policies are the choice of housing taxes ti, which corresponds

to value capture or the first principal component, and hi, a minimum housing requirement, which

corresponds to exclusionary zoning and the second principal component. Governments in both

zones choose regulations in a non-cooperative way independent of the other jurisdiction.

E4 Equilibrium and Sorting

The key condition for market clearing is that total population satisfies

Nc +Ns = N

for each household type.

In spatial equilibrium, households sort across zones until they are indifferent, resulting in the

following condition:

[αc − αs] + log
sc
ss

= (1− γ)

[
log

rc
rs

+ log
1 + tc
1 + ts

]
+ log

Nc

Ns

. (2)

In other words, the relative benefit of being in one zone instead of the other (based on local

baseline amenity and government services) is equal to the additional costs (taxes and congestion

costs). We can also substitute in the government production function and rewrite this as:

[αc − αs] + [log γc − log γs] + [Gc −Gs] = (1− γ)

[
log

rc
rs

+ log
1 + tc
1 + ts

]
+ log

Nc

Ns

.

Exclusionary Zoning (hi) This regulatory choice is binding when raising hi) raises revenue via

the sorting of high productivity households:

∆hi

(
∆ηiNi ·

[
ti
∂ri
∂ηi

+ τ
∂w̃

∂ηi

]
+∆Ni ·

[
tiri + τw̃i +Niti

∂ri
∂Ni

])
≥ 0.
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Value Capture (ti) This regulatory choice is optimal when increased tax revenue offsets popu-

lation loss:

(1− γ) · Ñi +
∂Ñi

∂ti
[τ + (1− γ) · ti] ≥ 0.

E5 Existence and Uniqueness of Solution

Solution for Value Capture To ensure the existence of an equilibrium, we start from the

assumption that the government’s objective function is non-negative, as governments always have

the alternative of providing no public services, thereby incurring no cost. Hence, the optimal

government service provision (Gi) must satisfy the first-order conditions rather than merely binding

the budget constraint in equilibrium.

Under symmetric conditions, spatial equilibrium in equation (2) requires that the ratio of govern-

ment services between the city core and the suburb (log(s∗c/s∗s)) equals the ratio of their productivity

parameters (log(γc/γs). This reduces equilibrium determination to solving the household indiffer-

ence condition for population distribution (N∗
c ), given that the left-hand side of equation (2) is

constant and the right-hand side increases strictly with city core population (Nc). This yields a

unique solution for N∗
c , implying unique equilibrium allocations for government services G∗

c and G∗
s.

Specifically, the unique equilibrium holds under the condition d(RHS)/dNc · N∗
c ≥ 1 and

d(RHS)/dNc · N∗
s ≥ 1. If this condition fails, the equilibrium does not exist. However, because

d(RHS)/dNc consistently exceeds 1/Nc + 1/Ns, a unique equilibrium generally exists.

Solution for Exclusionary Zoning When examining existence under exclusionary zoning condi-

tions, the equilibrium structure changes. Exclusionary zoning mandates imply all low-type house-

holds leave the zone that enforces such regulations. The household indifference condition thus

applies solely to high-type households, as low-type households always prefer the non-exclusionary

zone. Being constrained by exclusionary regulations imposes utility costs on low-type households,

effectively excluding them from suburbs. In this scenario, equilibrium again depends on solving the

household indifference condition (equation (2)) specifically for high-type households, confirming the

existence of at most one internal equilibrium solution for the share of high-type households (η∗)).

If such an internal equilibrium does not exist—–meaning the maximum utility difference between
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zones remains insufficient to attract high-type households—the outcome defaults to a corner solu-

tion: the city core is fully populated by low-type workers, and the suburb exclusively by high-type

workers.
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